Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
- Volume: 40, Issue: 6, page 991-1021
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topBerrone, Stefano. "Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 40.6 (2006): 991-1021. <http://eudml.org/doc/244686>.
@article{Berrone2006,
abstract = {In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable $\theta $-scheme with $1/2\le \theta \le 1$. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization error-estimator. In this work we introduce a similar splitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math. 72 (1996) 313–348; Petzoldt, Adv. Comput. Math. 16 (2002) 47–75] we have upper and lower bounds whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.},
author = {Berrone, Stefano},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {a posteriori error estimates; parabolic problems; discontinuous coefficients; finite elements; heat equation},
language = {eng},
number = {6},
pages = {991-1021},
publisher = {EDP-Sciences},
title = {Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients},
url = {http://eudml.org/doc/244686},
volume = {40},
year = {2006},
}
TY - JOUR
AU - Berrone, Stefano
TI - Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2006
PB - EDP-Sciences
VL - 40
IS - 6
SP - 991
EP - 1021
AB - In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable $\theta $-scheme with $1/2\le \theta \le 1$. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization error-estimator. In this work we introduce a similar splitting for the data-approximation error in time and in space. Assuming the quasi-monotonicity condition [Dryja et al., Numer. Math. 72 (1996) 313–348; Petzoldt, Adv. Comput. Math. 16 (2002) 47–75] we have upper and lower bounds whose ratio is independent of any meshsize, timestep, problem parameter and its jumps.
LA - eng
KW - a posteriori error estimates; parabolic problems; discontinuous coefficients; finite elements; heat equation
UR - http://eudml.org/doc/244686
ER -
References
top- [1] I. Babuška and W.C. Rheinboldt, Error estimates for adaptive finite element method. SIAM J. Numer. Anal. 15 (1978) 736–754. Zbl0398.65069
- [2] R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods. Acta Num. (2001) 1–102. Zbl1105.65349
- [3] A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comp. 74 (2004) 1117–1138. Zbl1072.65124
- [4] C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. Zbl0962.65096
- [5] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978). Zbl0383.65058MR520174
- [6] P. Clément, Approximation by finite element functions using local regularization. RAIRO Sér. Rouge Anal. Numér. 9 (1975) 77–84. Zbl0368.65008
- [7] W. Dörfler, A convergent adaptive algorithm for Poisson’s equation. SIAM J. Numer. Anal. 33 (1996) 1106–1124. Zbl0854.65090
- [8] M. Dryja, M.V. Sarkis and O.B. Widlund, Multilevel Schwarz methods for elliptic problems with discontinuous coefficients in three dimensions. Numer. Math. 72 (1996) 313–348. Zbl0857.65131
- [9] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. V. Long-time integration. SIAM J. Numer. Anal. 32 (1995) 1750–1763. Zbl0835.65117
- [10] K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations. Acta Num. (1995) 105–158. Zbl0829.65122
- [11] B.S. Kirk, J.W. Peterson, R. Stogner and S. Petersen, LibMesh. The University of Texas, Austin, CFDLab and Technische Universität Hamburg, Hamburg. http://libmesh.sourceforge.net.
- [12] P. Morin, R.H. Nocetto and K.G. Siebert, Convergence of adaptive finite element methods. SIAM Rev. 44 (2002) 631–658. Zbl1016.65074
- [13] M. Petzoldt, A posteriori error estimators for elliptic equations with discontinuous coefficients. Adv. Comput. Math. 16 (2002) 47–75. Zbl0997.65123
- [14] M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. Zbl0935.65105
- [15] R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of parabolic equations. Ruhr-Universität Bochum, Report 180/1995. Zbl0974.65087
- [16] R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. John Wiley & Sons, Chichester-New York (1996). Zbl0853.65108
- [17] R. Verfürth, A posteriori error estimates for finite element discretization of the heat equations. Calcolo 40 (2003) 195–212. Zbl1168.65418
- [18] O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg. 24 (1987) 337–357. Zbl0602.73063
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.