A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media

María-Luisa Rapún; Francisco-Javier Sayas[1]

  • [1] Dep. Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, c/ María de Luna, 3–50015 Zaragoza, Spain.

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2006)

  • Volume: 40, Issue: 5, page 871-896
  • ISSN: 0764-583X

Abstract

top
This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.

How to cite

top

Rapún, María-Luisa, and Sayas, Francisco-Javier. "A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 40.5 (2006): 871-896. <http://eudml.org/doc/244801>.

@article{Rapún2006,
abstract = {This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.},
affiliation = {Dep. Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, c/ María de Luna, 3–50015 Zaragoza, Spain.},
author = {Rapún, María-Luisa, Sayas, Francisco-Javier},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {coupling; finite elements; boundary elements; exterior boundary value problem; Helmholtz equation; thermal waves; scattering; non-homogeneous media; finite element method (FEM); boundary element method (BEM); Galerkin method; well-posedness; stability; convergence; non-destructing testing; numerical examples; time-harmonic diffusion problem; Helmholtz transmission problem},
language = {eng},
number = {5},
pages = {871-896},
publisher = {EDP-Sciences},
title = {A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media},
url = {http://eudml.org/doc/244801},
volume = {40},
year = {2006},
}

TY - JOUR
AU - Rapún, María-Luisa
AU - Sayas, Francisco-Javier
TI - A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2006
PB - EDP-Sciences
VL - 40
IS - 5
SP - 871
EP - 896
AB - This paper proposes and analyzes a BEM-FEM scheme to approximate a time-harmonic diffusion problem in the plane with non-constant coefficients in a bounded area. The model is set as a Helmholtz transmission problem with adsorption and with non-constant coefficients in a bounded domain. We reformulate the problem as a four-field system. For the temperature and the heat flux we use piecewise constant functions and lowest order Raviart-Thomas elements associated to a triangulation approximating the bounded domain. For the boundary unknowns we take spaces of periodic splines. We show how to transmit information from the approximate boundary to the exact one in an efficient way and prove well-posedness of the Galerkin method. Error estimates are provided and experimentally corroborated at the end of the work.
LA - eng
KW - coupling; finite elements; boundary elements; exterior boundary value problem; Helmholtz equation; thermal waves; scattering; non-homogeneous media; finite element method (FEM); boundary element method (BEM); Galerkin method; well-posedness; stability; convergence; non-destructing testing; numerical examples; time-harmonic diffusion problem; Helmholtz transmission problem
UR - http://eudml.org/doc/244801
ER -

References

top
  1. [1] D.P. Almond and P.M. Patel, Photothermal science and techniques. Chapman and Hall, London (1996). 
  2. [2] J.-P. Aubin, Approximation of elliptic boundary-value problems. Wiley-Interscience, New York-London-Sydney (1972). Zbl0248.65063MR478662
  3. [3] H.T. Banks, F. Kojima and W.P. Winfree, Boundary estimation problems arising in thermal tomography. Inverse Problems 6 (1990) 897–921. Zbl0749.65080
  4. [4] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
  5. [5] F. Brezzi and C. Johnson, On the coupling of boundary integral and finite element methods. Calcolo 16 (1979) 189–201. Zbl0423.65056
  6. [6] G. Chen and J. Zhou, Boundary element methods. Academic Press, London (1992). Zbl0842.65071MR1170348
  7. [7] M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements. Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech. (1987) 411–420. Zbl0682.65069
  8. [8] M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106 (1985) 367–413. Zbl0597.35021
  9. [9] M. Crouzeix and F.-J. Sayas, Asymptotic expansions of the error of spline Galerkin boundary element methods. Numer. Math. 78 (1998) 523–547. Zbl0899.65061
  10. [10] F. Garrido and A. Salazar, Thermal wave scattering by spheres. J. Appl. Phys. 95 (2004) 140–149. 
  11. [11] G.N. Gatica and G.C. Hsiao, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in 2 . Numer. Math. 61 (1992) 171–214. Zbl0741.65084
  12. [12] G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Pitman Research Notes in Mathematics Series 331, Longman Scientific and Technical, Harlow, UK (1995). Zbl0832.65126MR1379331
  13. [13] G.N. Gatica and S. Meddahi, A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp. 70 (2001) 1461–1480. Zbl0980.65132
  14. [14] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer-Verlag, New York (1986). Zbl0585.65077MR851383
  15. [15] H. Han, A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8 (1990) 223–232. Zbl0712.65093
  16. [16] T. Hohage, M.-L. Rapún and F.-J. Sayas, Detecting corrosion using thermal measurements. Inverse Probl. (to appear). Zbl1111.35113MR2302962
  17. [17] G.C. Hsiao, The coupling of BEM and FEM – a brief review. Boundary elements X, Vol 1 (Southampton, 1988). Comput. Mech. (1988) 431–445. 
  18. [18] G.C. Hsiao, P. Kopp and W.L. Wendland, A Galerkin collocation method for some integral equations of the first kind. Computing 25 (1980) 89–130. Zbl0419.65088
  19. [19] G.C. Hsiao, P. Kopp and W.L. Wendland, Some applications of a Galerkin-collocation method for boundary integral equations of the first kind. Math. Method. Appl. Sci. 6 (1984) 280–325. Zbl0546.65091
  20. [20] C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063–1079. Zbl0451.65083
  21. [21] R.E. Kleinman and P.A. Martin, On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math 48 (1988) 307–325. Zbl0663.76095
  22. [22] R. Kress, Linear integral equations. Second edition. Springer-Verlag, New York (1999). Zbl0920.45001MR1723850
  23. [23] R. Kress and G.F. Roach, Transmission problems for the Helmholtz equation. J. Math. Phys. 19 (1978) 1433–1437. Zbl0433.35017
  24. [24] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Num Anal. 23 (1986) 562–580. Zbl0605.65071
  25. [25] A. Mandelis, Photoacoustic and thermal wave phenomena in semiconductors. North-Holland, New York (1987). 
  26. [26] A. Mandelis, Diffusion-wave fields. Mathematical methods and Green functions. Springer-Verlag, New York (2001). Zbl0976.78001MR1885417
  27. [27] A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems. J. Comput. Phys. 199 (2004) 205–220. Zbl1127.74328
  28. [28] W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). Zbl0948.35001MR1742312
  29. [29] S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 127–141. Zbl0996.78013
  30. [30] S. Meddahi and A. Márquez, A combination of spectral and finite elements for an exterior problem in the plane. Appl. Numer. Math. 43 (2002) 275–295. Zbl1015.65061
  31. [31] S. Meddahi and F.-J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 2082–2102. Zbl0981.65129
  32. [32] S. Meddahi and F.-J. Sayas, Analysis of a new BEM-FEM coupling for two-dimensional fluid-solid interaction. Numer. Methods Partial Differ. Equ. 21 (2005) 1017–1042. Zbl1078.74054
  33. [33] S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. ESAIM: M2AN 37 (2003) 291–318. Zbl1031.78012
  34. [34] S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 113–124. Zbl0854.65103
  35. [35] S. Meddahi, A. Márquez and V. Selgas, Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal. 41 (2003) 1729–1750. Zbl1056.65119
  36. [36] S.G. Mikhlin, Mathematical Physics, an advanced course. North-Holland, Amsterdam-London (1970). Zbl0202.36901MR286325
  37. [37] L. Nicolaides and A. Mandelis, Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions. Inverse problems 13 (1997) 1393–1412. Zbl0882.35137
  38. [38] M.-L. Rapún, Numerical methods for the study of the scattering of thermal waves. Ph.D. Thesis, University of Zaragoza, (2004). In Spanish. 
  39. [39] M.-L. Rapún and F.-J. Sayas, Boundary integral approximation of a heat diffusion problem in time-harmonic regime. Numer. Algorithms 41 (2006) 127–160. Zbl1096.65122
  40. [40] F.-J. Sayas, A nodal coupling of finite and boundary elements. Numer. Methods Partial Differ. Equ. 19 (2003) 555–570. Zbl1033.65104
  41. [41] J.M. Terrón, A. Salazar and A. Sánchez-Lavega, General solution for the thermal wave scattering in fiber composites. J. Appl. Phys. 91 (2002) 1087–1098. 
  42. [42] R.H. Torres and G.V. Welland, The Helmholtz equation and transmission problems with Lipschitz interfaces. Indiana Univ. Math. J. 42 (1993) 1457–1485. Zbl0794.35031
  43. [43] T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. Zbl0694.35048
  44. [44] A. Ženišek, Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London (1990). Zbl0731.65090MR1086876
  45. [45] M. Zlámal, Curved elements in the finite element method I. SIAM J. Numer. Anal. 10 (1973) 229–240. Zbl0285.65067
  46. [46] M. Zlámal, Curved elements in the finite element method II. SIAM J. Numer. Anal. 11 (1974) 347–362. Zbl0277.65064

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.