A mixed-FEM and BEM coupling for the approximation of the scattering of thermal waves in locally non-homogeneous media
María-Luisa Rapún; Francisco-Javier Sayas[1]
- [1] Dep. Matemática Aplicada, Universidad de Zaragoza, Centro Politécnico Superior, c/ María de Luna, 3–50015 Zaragoza, Spain.
- Volume: 40, Issue: 5, page 871-896
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] D.P. Almond and P.M. Patel, Photothermal science and techniques. Chapman and Hall, London (1996).
- [2] J.-P. Aubin, Approximation of elliptic boundary-value problems. Wiley-Interscience, New York-London-Sydney (1972). Zbl0248.65063MR478662
- [3] H.T. Banks, F. Kojima and W.P. Winfree, Boundary estimation problems arising in thermal tomography. Inverse Problems 6 (1990) 897–921. Zbl0749.65080
- [4] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, New York (1991). Zbl0788.73002MR1115205
- [5] F. Brezzi and C. Johnson, On the coupling of boundary integral and finite element methods. Calcolo 16 (1979) 189–201. Zbl0423.65056
- [6] G. Chen and J. Zhou, Boundary element methods. Academic Press, London (1992). Zbl0842.65071MR1170348
- [7] M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements. Boundary elements IX, Vol. 1 (Stuttgart, 1987), Comput. Mech. (1987) 411–420. Zbl0682.65069
- [8] M. Costabel and E. Stephan, A direct boundary integral equation method for transmission problems. J. Math. Anal. Appl. 106 (1985) 367–413. Zbl0597.35021
- [9] M. Crouzeix and F.-J. Sayas, Asymptotic expansions of the error of spline Galerkin boundary element methods. Numer. Math. 78 (1998) 523–547. Zbl0899.65061
- [10] F. Garrido and A. Salazar, Thermal wave scattering by spheres. J. Appl. Phys. 95 (2004) 140–149.
- [11] G.N. Gatica and G.C. Hsiao, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in . Numer. Math. 61 (1992) 171–214. Zbl0741.65084
- [12] G.N. Gatica and G.C. Hsiao, Boundary-field equation methods for a class of nonlinear problems. Pitman Research Notes in Mathematics Series 331, Longman Scientific and Technical, Harlow, UK (1995). Zbl0832.65126MR1379331
- [13] G.N. Gatica and S. Meddahi, A dual-dual mixed formulation for nonlinear exterior transmission problems. Math. Comp. 70 (2001) 1461–1480. Zbl0980.65132
- [14] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations. Theory and algorithms. Springer-Verlag, New York (1986). Zbl0585.65077MR851383
- [15] H. Han, A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8 (1990) 223–232. Zbl0712.65093
- [16] T. Hohage, M.-L. Rapún and F.-J. Sayas, Detecting corrosion using thermal measurements. Inverse Probl. (to appear). Zbl1111.35113MR2302962
- [17] G.C. Hsiao, The coupling of BEM and FEM – a brief review. Boundary elements X, Vol 1 (Southampton, 1988). Comput. Mech. (1988) 431–445.
- [18] G.C. Hsiao, P. Kopp and W.L. Wendland, A Galerkin collocation method for some integral equations of the first kind. Computing 25 (1980) 89–130. Zbl0419.65088
- [19] G.C. Hsiao, P. Kopp and W.L. Wendland, Some applications of a Galerkin-collocation method for boundary integral equations of the first kind. Math. Method. Appl. Sci. 6 (1984) 280–325. Zbl0546.65091
- [20] C. Johnson and J.-C. Nédélec, On the coupling of boundary integral and finite element methods. Math. Comp. 35 (1980) 1063–1079. Zbl0451.65083
- [21] R.E. Kleinman and P.A. Martin, On single integral equations for the transmission problem of acoustics. SIAM J. Appl. Math 48 (1988) 307–325. Zbl0663.76095
- [22] R. Kress, Linear integral equations. Second edition. Springer-Verlag, New York (1999). Zbl0920.45001MR1723850
- [23] R. Kress and G.F. Roach, Transmission problems for the Helmholtz equation. J. Math. Phys. 19 (1978) 1433–1437. Zbl0433.35017
- [24] M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries. SIAM J. Num Anal. 23 (1986) 562–580. Zbl0605.65071
- [25] A. Mandelis, Photoacoustic and thermal wave phenomena in semiconductors. North-Holland, New York (1987).
- [26] A. Mandelis, Diffusion-wave fields. Mathematical methods and Green functions. Springer-Verlag, New York (2001). Zbl0976.78001MR1885417
- [27] A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems. J. Comput. Phys. 199 (2004) 205–220. Zbl1127.74328
- [28] W. McLean, Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000). Zbl0948.35001MR1742312
- [29] S. Meddahi, A mixed-FEM and BEM coupling for a two-dimensional eddy current problem. Numer. Funct. Anal. Optim. 22 (2001) 127–141. Zbl0996.78013
- [30] S. Meddahi and A. Márquez, A combination of spectral and finite elements for an exterior problem in the plane. Appl. Numer. Math. 43 (2002) 275–295. Zbl1015.65061
- [31] S. Meddahi and F.-J. Sayas, A fully discrete BEM-FEM for the exterior Stokes problem in the plane. SIAM J. Numer. Anal. 37 (2000) 2082–2102. Zbl0981.65129
- [32] S. Meddahi and F.-J. Sayas, Analysis of a new BEM-FEM coupling for two-dimensional fluid-solid interaction. Numer. Methods Partial Differ. Equ. 21 (2005) 1017–1042. Zbl1078.74054
- [33] S. Meddahi and V. Selgas, A mixed-FEM and BEM coupling for a three-dimensional eddy current problem. ESAIM: M2AN 37 (2003) 291–318. Zbl1031.78012
- [34] S. Meddahi, J. Valdés, O. Menéndez and P. Pérez, On the coupling of boundary integral and mixed finite element methods. J. Comput. Appl. Math. 69 (1996) 113–124. Zbl0854.65103
- [35] S. Meddahi, A. Márquez and V. Selgas, Computing acoustic waves in an inhomogeneous medium of the plane by a coupling of spectral and finite elements. SIAM J. Numer. Anal. 41 (2003) 1729–1750. Zbl1056.65119
- [36] S.G. Mikhlin, Mathematical Physics, an advanced course. North-Holland, Amsterdam-London (1970). Zbl0202.36901MR286325
- [37] L. Nicolaides and A. Mandelis, Image-enhanced thermal-wave slice diffraction tomography with numerically simulated reconstructions. Inverse problems 13 (1997) 1393–1412. Zbl0882.35137
- [38] M.-L. Rapún, Numerical methods for the study of the scattering of thermal waves. Ph.D. Thesis, University of Zaragoza, (2004). In Spanish.
- [39] M.-L. Rapún and F.-J. Sayas, Boundary integral approximation of a heat diffusion problem in time-harmonic regime. Numer. Algorithms 41 (2006) 127–160. Zbl1096.65122
- [40] F.-J. Sayas, A nodal coupling of finite and boundary elements. Numer. Methods Partial Differ. Equ. 19 (2003) 555–570. Zbl1033.65104
- [41] J.M. Terrón, A. Salazar and A. Sánchez-Lavega, General solution for the thermal wave scattering in fiber composites. J. Appl. Phys. 91 (2002) 1087–1098.
- [42] R.H. Torres and G.V. Welland, The Helmholtz equation and transmission problems with Lipschitz interfaces. Indiana Univ. Math. J. 42 (1993) 1457–1485. Zbl0794.35031
- [43] T. von Petersdorff, Boundary integral equations for mixed Dirichlet, Neumann and transmission problems. Math. Methods Appl. Sci. 11 (1989) 185–213. Zbl0694.35048
- [44] A. Ženišek, Nonlinear elliptic and evolution problems and their finite element approximations. Academic Press, London (1990). Zbl0731.65090MR1086876
- [45] M. Zlámal, Curved elements in the finite element method I. SIAM J. Numer. Anal. 10 (1973) 229–240. Zbl0285.65067
- [46] M. Zlámal, Curved elements in the finite element method II. SIAM J. Numer. Anal. 11 (1974) 347–362. Zbl0277.65064