Feedback in state constrained optimal control

Francis H. Clarke; Ludovic Rifford; R. J. Stern

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 7, page 97-133
  • ISSN: 1292-8119

Abstract

top
An optimal control problem is studied, in which the state is required to remain in a compact set S . A control feedback law is constructed which, for given ε > 0 , produces ε -optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in S . The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of S and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.

How to cite

top

Clarke, Francis H., Rifford, Ludovic, and Stern, R. J.. "Feedback in state constrained optimal control." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 97-133. <http://eudml.org/doc/244838>.

@article{Clarke2002,
abstract = {An optimal control problem is studied, in which the state is required to remain in a compact set $S$. A control feedback law is constructed which, for given $\varepsilon &gt;0$, produces $\varepsilon $-optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in $S$. The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of $S$ and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.},
author = {Clarke, Francis H., Rifford, Ludovic, Stern, R. J.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal control; state constraint; near-optimal control feedback; nonsmooth analysis},
language = {eng},
pages = {97-133},
publisher = {EDP-Sciences},
title = {Feedback in state constrained optimal control},
url = {http://eudml.org/doc/244838},
volume = {7},
year = {2002},
}

TY - JOUR
AU - Clarke, Francis H.
AU - Rifford, Ludovic
AU - Stern, R. J.
TI - Feedback in state constrained optimal control
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 97
EP - 133
AB - An optimal control problem is studied, in which the state is required to remain in a compact set $S$. A control feedback law is constructed which, for given $\varepsilon &gt;0$, produces $\varepsilon $-optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in $S$. The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of $S$ and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.
LA - eng
KW - optimal control; state constraint; near-optimal control feedback; nonsmooth analysis
UR - http://eudml.org/doc/244838
ER -

References

top
  1. [1] F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM: COCV 4 (1999) 445-471. Zbl0924.34058MR1693900
  2. [2] N.N. Barabanova and A.I. Subbotin, On continuous evasion strategies in game theoretic problems on the encounter of motions. Prikl. Mat. Mekh. 34 (1970) 796-803. Zbl0256.90060MR312918
  3. [3] N.N. Barabanova and A.I. Subbotin, On classes of strategies in differential games of evasion. Prikl. Mat. Mekh. 35 (1971) 385-392. Zbl0247.90082MR354048
  4. [4] M. Bardi and I. Capuzzo–Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997). Zbl0890.49011
  5. [5] L.D. Berkovitz, Optimal feedback controls. SIAM J. Control Optim. 27 (1989) 991-1006. Zbl0684.49008MR1009334
  6. [6] P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322-1347. Zbl0744.49011MR1132185
  7. [7] I. Capuzzo–Dolcetta and P.L. Lions, Hamilton–Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643-683. Zbl0702.49019
  8. [8] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Vol. 5 of Classics in Appl. Math. SIAM, Philadelphia (1990). Zbl0696.49002MR709590
  9. [9] F.H. Clarke, Methods of Dynamic and Nonsmooth Optimization, Vol. 57 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1989). Zbl0696.49003MR1085948
  10. [10] F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. Zbl0961.93047MR1780907
  11. [11] F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies control feedback stabilization. IEEE Trans. Automat. Control 42 (1997) 1394. Zbl0892.93053MR1472857
  12. [12] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Proximal analysis and control feedback construction. Proc. Steklov Inst. Math. 226 (2000) 1-20. Zbl1116.93031MR2066016
  13. [13] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Systems 1 (1995) 1-48. Zbl0951.49003MR1319056
  14. [14] F.H. Clarke, Yu.S. Ledyaev and A.I. Subbotin, Universal feedback strategies for differential games of pursuit. SIAM J. Control Optim. 35 (1997) 552-561. Zbl0872.90128MR1436638
  15. [15] F.H. Clarke, Yu.S. Ledyaev and A.I. Subbotin, Universal positional control. Proc. Steklov Inst. Math. 224 (1999) 165-186. Preliminary version: Preprint CRM-2386. Univ. de Montréal (1994). Zbl0965.49022MR1721361
  16. [16] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Complements, approximations, smoothings and invariance properties. J. Convex Anal. 4 (1997) 189-219. Zbl0905.49010MR1613455
  17. [17] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998). Zbl1047.49500MR1488695
  18. [18] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower- C 2 property. J. Convex Anal. 2 (1995) 117-145. Zbl0881.49008MR1363364
  19. [19] F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming. Differential and Integral Equations 12 (1999) 471-497. Zbl1015.34006MR1697241
  20. [20] H. Frankowska and F. Rampazzo, Filippov’s and Filippov–Wazewski’s theorems on closed domains. J. Differential Equations 161 (2000) 449-478. Zbl0956.34012
  21. [21] G.G. Garnysheva and A.I. Subbotin, Suboptimal universal strategies in a game-theoretic time-optimality problem. Prikl. Mat. Mekh. 59 (1995) 707-713. Zbl0885.90132MR1367417
  22. [22] J.-B. Hiriart–Urruty, New concepts in nondifferentiable programming. Bull. Soc. Math. France 60 (1979) 57-85. Zbl0469.90071
  23. [23] H. Ishii and S. Koike, On ε -optimal controls for state constraint problems. Ann. Inst. H. Poincaré Anal. Linéaire 17 (2000) 473-502. Zbl0969.49019MR1782741
  24. [24] N.N. Krasovskiĭ, Differential games. Approximate and formal models. Mat. Sb. (N.S.) 107 (1978) 541-571. Zbl0439.90114MR524205
  25. [25] N.N. Krasovskiĭ, Extremal aiming and extremal displacement in a game-theoretical control. Problems Control Inform. Theory 13 (1984) 287-302. Zbl0625.90104MR776020
  26. [26] N.N. Krasovskiĭ, Control of dynamical systems. Nauka, Moscow (1985). Zbl0969.49022
  27. [27] N.N. Krasovskiĭ and A.I. Subbotin, Positional Differential Games. Nauka, Moscow (1974). French translation: Jeux Différentielles. Mir, Moscou (1979). Zbl0298.90067MR437107
  28. [28] N.N. Krasovskiĭ and A.I. Subbotin, Game-Theoretical Control Problems. Springer-Verlag, New York (1988). Zbl0649.90101MR918771
  29. [29] P. Loewen, Optimal Control via Nonsmooth Analysis. CRM Proc. Lecture Notes Amer. Math. Soc. 2 (1993). Zbl0874.49002MR1232864
  30. [30] S. Nobakhtian and R.J. Stern, Universal near-optimal control feedbacks. J. Optim. Theory Appl. 107 (2000) 89-123. Zbl1027.49030MR1800931
  31. [31] L. Rifford, Problèmes de Stabilisation en Théorie du Contrôle, Doctoral Thesis. Univ. Claude Bernard Lyon 1 (2000). 
  32. [32] L. Rifford, Stabilisation des systèmes globalement asymptotiquement commandables. C. R. Acad. Sci. Paris 330 (2000) 211-216. Zbl0952.93113MR1748310
  33. [33] L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. (to appear). Zbl0982.93068MR1814266
  34. [34] R.T. Rockafellar, Clarke’s tangent cones and boundaries of closed sets in n . Nonlinear Anal. 3 (1979) 145-154. Zbl0443.26010
  35. [35] R.T. Rockafellar, Favorable classes of Lipschitz continuous functions in subgradient optimization, in Nondifferentiable Optimization, edited by E. Nurminski. Permagon Press, New York (1982). Zbl0511.26009MR704977
  36. [36] J.D.L. Rowland and R.B. Vinter, Construction of optimal control feedback controls. Systems Control Lett. 16 (1991) 357-357. Zbl0736.49020MR1108598
  37. [37] M. Soner, Optimal control problems with state-space constraints I. SIAM J. Control Optim. 24 (1986) 551-561. Zbl0597.49023
  38. [38] E.D. Sontag, Mathematical Control Theory, 2nd Ed.. Springer-Verlag, New York, Texts in Appl. Math. 6 (1998). Zbl0945.93001MR1640001
  39. [39] E.D. Sontag, Clock and insensitivity to small measurement errors. ESAIM: COCV 4 (1999) 537-557. Zbl0984.93068MR1746166
  40. [40] A.I. Subbotin, Generalized Solutions of First Order PDE’s. Birkhäuser, Boston (1995). Zbl0820.35003
  41. [41] N.N. Subbotina, Universal optimal strategies in positional differential games. Differential Equations 19 (1983) 1377-1382. Zbl0543.90104MR723984
  42. [42] N.N. Subbotina, The maximum principle and the superdifferential of the value function. Problems Control Inform. Theory 18 (1989) 151-160. Zbl0684.49009MR1002906
  43. [43] N.N. Subbotina, On structure of optimal feedbacks to control problems, Preprints of the eleventh IFAC International Workshop, Control Applications of Optimization, edited by V. Zakharov (2000). 
  44. [44] R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000). Zbl0952.49001MR1756410

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.