Feedback in state constrained optimal control
Francis H. Clarke; Ludovic Rifford; R. J. Stern
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 7, page 97-133
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topClarke, Francis H., Rifford, Ludovic, and Stern, R. J.. "Feedback in state constrained optimal control." ESAIM: Control, Optimisation and Calculus of Variations 7 (2002): 97-133. <http://eudml.org/doc/244838>.
@article{Clarke2002,
abstract = {An optimal control problem is studied, in which the state is required to remain in a compact set $S$. A control feedback law is constructed which, for given $\varepsilon >0$, produces $\varepsilon $-optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in $S$. The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of $S$ and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.},
author = {Clarke, Francis H., Rifford, Ludovic, Stern, R. J.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {optimal control; state constraint; near-optimal control feedback; nonsmooth analysis},
language = {eng},
pages = {97-133},
publisher = {EDP-Sciences},
title = {Feedback in state constrained optimal control},
url = {http://eudml.org/doc/244838},
volume = {7},
year = {2002},
}
TY - JOUR
AU - Clarke, Francis H.
AU - Rifford, Ludovic
AU - Stern, R. J.
TI - Feedback in state constrained optimal control
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 7
SP - 97
EP - 133
AB - An optimal control problem is studied, in which the state is required to remain in a compact set $S$. A control feedback law is constructed which, for given $\varepsilon >0$, produces $\varepsilon $-optimal trajectories that satisfy the state constraint universally with respect to all initial conditions in $S$. The construction relies upon a constraint removal technique which utilizes geometric properties of inner approximations of $S$ and a related trajectory tracking result. The control feedback is shown to possess a robustness property with respect to state measurement error.
LA - eng
KW - optimal control; state constraint; near-optimal control feedback; nonsmooth analysis
UR - http://eudml.org/doc/244838
ER -
References
top- [1] F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM: COCV 4 (1999) 445-471. Zbl0924.34058MR1693900
- [2] N.N. Barabanova and A.I. Subbotin, On continuous evasion strategies in game theoretic problems on the encounter of motions. Prikl. Mat. Mekh. 34 (1970) 796-803. Zbl0256.90060MR312918
- [3] N.N. Barabanova and A.I. Subbotin, On classes of strategies in differential games of evasion. Prikl. Mat. Mekh. 35 (1971) 385-392. Zbl0247.90082MR354048
- [4] M. Bardi and I. Capuzzo–Dolcetta, Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations. Birkhäuser, Boston (1997). Zbl0890.49011
- [5] L.D. Berkovitz, Optimal feedback controls. SIAM J. Control Optim. 27 (1989) 991-1006. Zbl0684.49008MR1009334
- [6] P. Cannarsa and H. Frankowska, Some characterizations of optimal trajectories in control theory. SIAM J. Control Optim. 29 (1991) 1322-1347. Zbl0744.49011MR1132185
- [7] I. Capuzzo–Dolcetta and P.L. Lions, Hamilton–Jacobi equations with state constraints. Trans. Amer. Math. Soc. 318 (1990) 643-683. Zbl0702.49019
- [8] F.H. Clarke, Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983). Republished as Vol. 5 of Classics in Appl. Math. SIAM, Philadelphia (1990). Zbl0696.49002MR709590
- [9] F.H. Clarke, Methods of Dynamic and Nonsmooth Optimization, Vol. 57 of CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1989). Zbl0696.49003MR1085948
- [10] F.H. Clarke, Yu.S. Ledyaev, L. Rifford and R.J. Stern, Feedback stabilization and Lyapunov functions. SIAM J. Control Optim. 39 (2000) 25-48. Zbl0961.93047MR1780907
- [11] F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag and A.I. Subbotin, Asymptotic controllability implies control feedback stabilization. IEEE Trans. Automat. Control 42 (1997) 1394. Zbl0892.93053MR1472857
- [12] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Proximal analysis and control feedback construction. Proc. Steklov Inst. Math. 226 (2000) 1-20. Zbl1116.93031MR2066016
- [13] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Qualitative properties of trajectories of control systems: A survey. J. Dynam. Control Systems 1 (1995) 1-48. Zbl0951.49003MR1319056
- [14] F.H. Clarke, Yu.S. Ledyaev and A.I. Subbotin, Universal feedback strategies for differential games of pursuit. SIAM J. Control Optim. 35 (1997) 552-561. Zbl0872.90128MR1436638
- [15] F.H. Clarke, Yu.S. Ledyaev and A.I. Subbotin, Universal positional control. Proc. Steklov Inst. Math. 224 (1999) 165-186. Preliminary version: Preprint CRM-2386. Univ. de Montréal (1994). Zbl0965.49022MR1721361
- [16] F.H. Clarke, Yu.S. Ledyaev and R.J. Stern, Complements, approximations, smoothings and invariance properties. J. Convex Anal. 4 (1997) 189-219. Zbl0905.49010MR1613455
- [17] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory. Springer-Verlag, New York, Grad. Texts in Math. 178 (1998). Zbl1047.49500MR1488695
- [18] F.H. Clarke, R.J. Stern and P.R. Wolenski, Proximal smoothness and the lower- property. J. Convex Anal. 2 (1995) 117-145. Zbl0881.49008MR1363364
- [19] F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set. Applications to dynamic programming. Differential and Integral Equations 12 (1999) 471-497. Zbl1015.34006MR1697241
- [20] H. Frankowska and F. Rampazzo, Filippov’s and Filippov–Wazewski’s theorems on closed domains. J. Differential Equations 161 (2000) 449-478. Zbl0956.34012
- [21] G.G. Garnysheva and A.I. Subbotin, Suboptimal universal strategies in a game-theoretic time-optimality problem. Prikl. Mat. Mekh. 59 (1995) 707-713. Zbl0885.90132MR1367417
- [22] J.-B. Hiriart–Urruty, New concepts in nondifferentiable programming. Bull. Soc. Math. France 60 (1979) 57-85. Zbl0469.90071
- [23] H. Ishii and S. Koike, On -optimal controls for state constraint problems. Ann. Inst. H. Poincaré Anal. Linéaire 17 (2000) 473-502. Zbl0969.49019MR1782741
- [24] N.N. Krasovskiĭ, Differential games. Approximate and formal models. Mat. Sb. (N.S.) 107 (1978) 541-571. Zbl0439.90114MR524205
- [25] N.N. Krasovskiĭ, Extremal aiming and extremal displacement in a game-theoretical control. Problems Control Inform. Theory 13 (1984) 287-302. Zbl0625.90104MR776020
- [26] N.N. Krasovskiĭ, Control of dynamical systems. Nauka, Moscow (1985). Zbl0969.49022
- [27] N.N. Krasovskiĭ and A.I. Subbotin, Positional Differential Games. Nauka, Moscow (1974). French translation: Jeux Différentielles. Mir, Moscou (1979). Zbl0298.90067MR437107
- [28] N.N. Krasovskiĭ and A.I. Subbotin, Game-Theoretical Control Problems. Springer-Verlag, New York (1988). Zbl0649.90101MR918771
- [29] P. Loewen, Optimal Control via Nonsmooth Analysis. CRM Proc. Lecture Notes Amer. Math. Soc. 2 (1993). Zbl0874.49002MR1232864
- [30] S. Nobakhtian and R.J. Stern, Universal near-optimal control feedbacks. J. Optim. Theory Appl. 107 (2000) 89-123. Zbl1027.49030MR1800931
- [31] L. Rifford, Problèmes de Stabilisation en Théorie du Contrôle, Doctoral Thesis. Univ. Claude Bernard Lyon 1 (2000).
- [32] L. Rifford, Stabilisation des systèmes globalement asymptotiquement commandables. C. R. Acad. Sci. Paris 330 (2000) 211-216. Zbl0952.93113MR1748310
- [33] L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. (to appear). Zbl0982.93068MR1814266
- [34] R.T. Rockafellar, Clarke’s tangent cones and boundaries of closed sets in . Nonlinear Anal. 3 (1979) 145-154. Zbl0443.26010
- [35] R.T. Rockafellar, Favorable classes of Lipschitz continuous functions in subgradient optimization, in Nondifferentiable Optimization, edited by E. Nurminski. Permagon Press, New York (1982). Zbl0511.26009MR704977
- [36] J.D.L. Rowland and R.B. Vinter, Construction of optimal control feedback controls. Systems Control Lett. 16 (1991) 357-357. Zbl0736.49020MR1108598
- [37] M. Soner, Optimal control problems with state-space constraints I. SIAM J. Control Optim. 24 (1986) 551-561. Zbl0597.49023
- [38] E.D. Sontag, Mathematical Control Theory, 2nd Ed.. Springer-Verlag, New York, Texts in Appl. Math. 6 (1998). Zbl0945.93001MR1640001
- [39] E.D. Sontag, Clock and insensitivity to small measurement errors. ESAIM: COCV 4 (1999) 537-557. Zbl0984.93068MR1746166
- [40] A.I. Subbotin, Generalized Solutions of First Order PDE’s. Birkhäuser, Boston (1995). Zbl0820.35003
- [41] N.N. Subbotina, Universal optimal strategies in positional differential games. Differential Equations 19 (1983) 1377-1382. Zbl0543.90104MR723984
- [42] N.N. Subbotina, The maximum principle and the superdifferential of the value function. Problems Control Inform. Theory 18 (1989) 151-160. Zbl0684.49009MR1002906
- [43] N.N. Subbotina, On structure of optimal feedbacks to control problems, Preprints of the eleventh IFAC International Workshop, Control Applications of Optimization, edited by V. Zakharov (2000).
- [44] R.B. Vinter, Optimal Control. Birkhäuser, Boston (2000). Zbl0952.49001MR1756410
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.