Nearly time optimal stabilizing patchy feedbacks

Fabio Ancona; Alberto Bressan

Annales de l'I.H.P. Analyse non linéaire (2007)

  • Volume: 24, Issue: 2, page 279-310
  • ISSN: 0294-1449

How to cite

top

Ancona, Fabio, and Bressan, Alberto. "Nearly time optimal stabilizing patchy feedbacks." Annales de l'I.H.P. Analyse non linéaire 24.2 (2007): 279-310. <http://eudml.org/doc/78735>.

@article{Ancona2007,
author = {Ancona, Fabio, Bressan, Alberto},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {time optimal stabilization; discontinuous feedback control; robustness},
language = {eng},
number = {2},
pages = {279-310},
publisher = {Elsevier},
title = {Nearly time optimal stabilizing patchy feedbacks},
url = {http://eudml.org/doc/78735},
volume = {24},
year = {2007},
}

TY - JOUR
AU - Ancona, Fabio
AU - Bressan, Alberto
TI - Nearly time optimal stabilizing patchy feedbacks
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2007
PB - Elsevier
VL - 24
IS - 2
SP - 279
EP - 310
LA - eng
KW - time optimal stabilization; discontinuous feedback control; robustness
UR - http://eudml.org/doc/78735
ER -

References

top
  1. [1] Ancona F., Bressan A., Patchy vector fields and asymptotic stabilization, ESAIM Control Optim. Calc. Var.4 (1999) 445-471. Zbl0924.34058MR1693900
  2. [2] Ancona F., Bressan A., Flow stability of patchy vector fields and robust feedback stabilization, SIAM J. Control Optim.41 (5) (2003) 1455-1476. Zbl1055.34094MR1971958
  3. [3] Ancona F., Bressan A., Stability rates for patchy vector fields, ESAIM Control Optim. Calc. Var.10 (2) (2004) 168-200. Zbl1083.34037MR2083482
  4. [4] Ancona F., Bressan A., Stabilization by patchy feedbacks and robustness properties, in: de Queiroz M.S., Malisoff M.A., Wolenski P.R. (Eds.), Optimal Control, Stabilization and Nonsmooth Analysis, Proceedings of “Louisiana Conference in Mathematical Control Theory (MCT'03)”, Lectures Notes in Control and Inform. Sci., vol. 301, Springer-Verlag, Heidelberg, 2004, pp. 185-200. Zbl1259.93091
  5. [5] Bardi M., Capuzzo Dolcetta I., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser Boston, Boston, MA, 1997. Zbl0890.49011
  6. [6] Berkovitz L.D., Optimal Control Theory, Applied Mathematical Sciences, vol. 12, Springer-Verlag, New York, 1974. Zbl0295.49001MR372707
  7. [7] Berkovitz L.D., Optimal feedback controls, SIAM J. Control Optim.27 (5) (1989) 991-1006. Zbl0684.49008MR1009334
  8. [8] Boltyanskii V.G., Optimal feedback controls, SIAM J. Control4 (1966) 326-361. 
  9. [9] Boscain U., Piccoli B., Optimal Syntheses for Control Systems on 2-D Manifolds, Mathematiques & Applications, vol. 43, Springer-Verlag, Berlin, 2004. Zbl1137.49001MR2031058
  10. [10] Bressan A., Singularities of stabilizing feedbacks, Control Theory and its Applications (Grado, 1998). Rend. Sem. Mat. Univ. Politec. Torino56 (4) (1998) 87-104. Zbl1024.93048MR1848147
  11. [11] Bressan A., Piccoli B., A generic classification of time-optimal planar stabilizing feedbacks, SIAM J. Control Optim.36 (1) (1998) 12-32. Zbl0910.93044MR1616525
  12. [12] Brunovský P., Existence of regular synthesis for general control problems, J. Differential Equations38 (3) (1980) 317-343. Zbl0417.49030MR605053
  13. [13] Cannarsa P., Frankowska H., Some characterization of optimal trajectories on control theory, SIAM J. Control Optim.29 (6) (1991) 1322-1347. Zbl0744.49011MR1132185
  14. [14] Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and their Applications, vol. 58, Birkhäuser Boston, Boston, MA, 2004. Zbl1095.49003
  15. [15] Clarke F.H., Ledyaev Yu.S., Rifford L., Stern R.J., Feedback stabilization and Lyapunov functions, SIAM J. Control Optim.39 (1) (2000) 25-48. Zbl0961.93047MR1780907
  16. [16] Clarke F.H., Ledyaev Yu.S., Sontag E.D., Subbotin A.I., Asymptotic controllability implies feedback stabilization, IEEE Trans. Autom. Control42 (1997) 1394-1407. Zbl0892.93053MR1472857
  17. [17] Clarke F.H., Rifford L., Stern R.J., Feedback in state constrained optimal control, ESAIM Control Optim. Calc. Var.7 (2002) 97-134. Zbl1033.49004MR1925023
  18. [18] Clarke F.H., Ledyaev Yu.S., Stern R.J., Wolenski P.R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, vol. 178, Springer-Verlag, New York, 1998. Zbl1047.49500MR1488695
  19. [19] Ishii H., Koike S., On ϵ-optimal controls for state constraints problems, Ann. Inst. H. Poincaré Anal. Non Linéaire17 (4) (2000) 473-502. Zbl0969.49019
  20. [20] Krasovskii N.N., Differential games. Approximate and formal models, Mat. Sb.6 (4) (1978) 541-571, English translation:, Math. USSR-Sb.35 (6) (1979) 795-822. Zbl0439.90114MR524205
  21. [21] Krasovskii N.N., Extremal aiming and extremal displacement in a game-theoretical control, Problems Control Inform. Theory13 (5) (1984) 287-302. Zbl0625.90104MR776020
  22. [22] Krasovskii N.N., Subbotin A.I., Positional Differential Games, Nauka, Moscow, 1974, (in Russian). Zbl0298.90067MR437107
  23. [23] Launay G., Pelletier L., The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two, J. Dynam. Control Systems3 (2) (1997) 165-203. Zbl0951.49027MR1449981
  24. [24] Marchal C., Chattering arcs and chattering controls, J. Optim. Theory Appl.11 (1973) 441-468. Zbl0243.49003MR339866
  25. [25] Marigo A., Piccoli B., Regular syntheses and solutions to discontinuous ODEs, ESAIM Control Optim. Calc. Var.7 (2002) 291-307. Zbl1053.49027MR1925031
  26. [26] Nobakhtian S., Stern R.J., Universal near-optimal feedbacks, J. Optim. Theory Appl.107 (1) (2000) 89-122. Zbl1027.49030MR1800931
  27. [27] Piccoli B., Regular time-optimal syntheses for smooth planar systems, Rend. Sem. Mat. Univ. Padova95 (1996) 59-79. Zbl0912.49018MR1405355
  28. [28] Piccoli B., Classification of generic singularities for the planar time-optimal synthesis, SIAM J. Control Optim.34 (6) (1996) 1914-1946. Zbl0865.49022MR1416494
  29. [29] Piccoli B., Sussmann H., Regular synthesis and sufficiency conditions for optimality, SIAM J. Control Optim.39 (2) (2000) 359-410. Zbl0961.93014MR1788064
  30. [30] Rifford L., Semiconcave control-Lyapunov functions and stabilizing feedbacks, SIAM J. Control Optim.41 (3) (2000) 659-681. Zbl1034.93053MR1939865
  31. [31] Rowland J.D., Vinter R.B., Construction of optimal feedback controls, Systems Control Lett.16 (5) (1991) 357-367. Zbl0736.49020MR1108598
  32. [32] Sontag E.D., Mathematical Control Theory. Deterministic Finite Dimensional Systems, Texts in Applied Mathematics, vol. 6, second ed., Springer-Verlag, New York, 1998. Zbl0945.93001MR1640001
  33. [33] Sontag E.D., Stability and stabilization: discontinuities and the effect of disturbances, in: Clarke F.H., Stern R.J. (Eds.), Nonlinear Analysis, Differential Equations, and Control, Proc. NATO Advanced Study Institute, Montreal, Jul/Aug 1998, Kluwer, 1999, pp. 551-598. Zbl0937.93034MR1695014
  34. [34] Sussmann H.J., Synthesis, presynthesis, sufficient conditions for optimality and subanalytic sets, in: Sussmann H.J. (Ed.), Nonlinear Controllability and Optimal Control, Dekker, New York, 1990, pp. 1-19. Zbl0712.49015MR1061381
  35. [35] Zelikin M.I., Borisov V.F., Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering, Systems & Control: Foundations & Applications, vol. 43, Birkhäuser Boston, Boston, MA, 1994. Zbl0820.70003MR1279383

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.