Displaying similar documents to “Feedback in state constrained optimal control”

On the existence of nonsmooth control-Lyapunov functions in the sense of generalized gradients

Ludovic Rifford (2001)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let x ˙ = f ( x , u ) be a general control system; the existence of a smooth control-Lyapunov function does not imply the existence of a continuous stabilizing feedback. However, we show that it allows us to design a stabilizing feedback in the Krasovskii (or Filippov) sense. Moreover, we recall a definition of a control-Lyapunov function in the case of a nonsmooth function; it is based on Clarke’s generalized gradient. Finally, with an inedite proof we prove that the existence of this type of control-Lyapunov...

Receding horizon optimal control for infinite dimensional systems

Kazufumi Ito, Karl Kunisch (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

The receding horizon control strategy for dynamical systems posed in infinite dimensional spaces is analysed. Its stabilising property is verified provided control Lyapunov functionals are used as terminal penalty functions. For closed loop dissipative systems the terminal penalty can be chosen as quadratic functional. Applications to the Navier–Stokes equations, semilinear wave equations and reaction diffusion systems are given.