Guaranteed and robust a posteriori error estimates for singularly perturbed reaction–diffusion problems
Ibrahim Cheddadi; Radek Fučík; Mariana I. Prieto; Martin Vohralík
ESAIM: Mathematical Modelling and Numerical Analysis (2009)
- Volume: 43, Issue: 5, page 867-888
- ISSN: 0764-583X
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Ainsworth and I. Babuška, Reliable and robust a posteriori error estimating for singularly perturbed reaction–diffusion problems. SIAM J. Numer. Anal.36 (1999) 331–353.
- R.E. Bank and D.J. Rose, Some error estimates for the box method. SIAM J. Numer. Anal.24 (1987) 777–787.
- M. Bebendorf, A note on the Poincaré inequality for convex domains. Z. Anal. Anwendungen22 (2003) 751–756.
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics15. Springer-Verlag, New York (1991).
- C. Carstensen and S.A. Funken, Constants in Clément-interpolation error and residual based a posteriori error estimates in finite element methods. East-West J. Numer. Math.8 (2000) 153–175.
- I. Cheddadi, R. Fučík, M.I. Prieto and M. Vohralík, Computable a posteriori error estimates in the finite element method based on its local conservativity: improvements using local minimization. ESAIM: Proc.24 (2008) 77–96.
- A. Ern, A.F. Stephansen and M. Vohralík, Guaranteed and robust discontinuous Galerkin a posteriori error estimates for convection–diffusion–reaction problems. HAL Preprint 00193540, submitted for publication (2008).
- R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in Handbook of Numerical Analysis, Vol. VII, North-Holland, Amsterdam (2000) 713–1020.
- S. Grosman, An equilibrated residual method with a computable error approximation for a singularly perturbed reaction–diffusion problem on anisotropic finite element meshes. ESAIM: M2AN40 (2006) 239–267.
- F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuka, FreeFem++. Technical report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, France, (2007). URIhttp://www.freefem.org/ff++
- S. Korotov, Two-sided a posteriori error estimates for linear elliptic problems with mixed boundary conditions. Appl. Math.52 (2007) 235–249.
- G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction–diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math.15 (2001) 237–259.
- R. Luce and B.I. Wohlmuth, A local a posteriori error estimator based on equilibrated fluxes. SIAM J. Numer. Anal.42 (2004) 1394–1414.
- K. Mer, Variational analysis of a mixed finite element/finite volume scheme on general triangulations. Technical report, INRIA 2213, France (1994).
- L.E. Payne and H.F. Weinberger, An optimal Poincaré inequality for convex domains. Arch. Rational Mech. Anal.5 (1960) 286–292.
- W. Prager and J.L. Synge, Approximations in elasticity based on the concept of function space. Quart. Appl. Math.5 (1947) 241–269.
- S. Repin and S. Sauter, Functional a posteriori estimates for the reaction–diffusion problem. C. R. Math. Acad. Sci. Paris343 (2006) 349–354.
- J.E. Roberts and J.-M. Thomas, Mixed and hybrid methods, in Handbook of Numerical Analysis, Vol. II, North-Holland, Amsterdam (1991) 523–639.
- A.F. Stephansen, Méthodes de Galerkine discontinues et analyse d'erreur a posteriori pour les problèmes de diffusion hétérogène. Ph.D. Thesis, École nationale des ponts et chaussées, France (2007).
- T. Vejchodský, Guaranteed and locally computable a posteriori error estimate. IMA J. Numer. Anal.26 (2006) 525–540.
- R. Verfürth, Robust a posteriori error estimators for a singularly perturbed reaction–diffusion equation. Numer. Math.78 (1998) 479–493.
- R. Verfürth, A note on constant-free a posteriori error estimates. Technical report, Ruhr-Universität Bochum, Germany (2008).
- M. Vohralík, On the discrete Poincaré–Friedrichs inequalities for nonconforming approximations of the Sobolev space H1. Numer. Funct. Anal. Optim.26 (2005) 925–952.
- M. Vohralík, A posteriori error estimates for lowest-order mixed finite element discretizations of convection–diffusion–reaction equations. SIAM J. Numer. Anal.45 (2007) 1570–1599.
- M. Vohralík, Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients. Preprint R08009, Laboratoire Jacques-Louis Lions, submitted for publication (2008).
- M. Vohralík, Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods. Numer. Math.111 (2008) 121–158.
- M. Vohralík, Two types of guaranteed (and robust) a posteriori estimates for finite volume methods, in Finite Volumes for Complex ApplicationsV, ISTE and John Wiley & Sons, London, UK and Hoboken, USA (2008) 649–656.
- O.C. Zienkiewicz and J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineering analysis. Internat. J. Numer. Methods Engrg.24 (1987) 337–357.