Low Mach number limit for viscous compressible flows

Raphaël Danchin

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique (2005)

  • Volume: 39, Issue: 3, page 459-475
  • ISSN: 0764-583X

Abstract

top
In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations when the Mach number ϵ goes to 0 . Besides, it is shown that the global existence for the limit equations entails the global existence for the compressible model with small ϵ . The reader is referred to [R. Danchin, Ann. Sci. Éc. Norm. Sup. (2002)] for the detailed proof in the whole space case, and to [R. Danchin, Am. J. Math. 124 (2002) 1153–1219] for the case of periodic boundary conditions.

How to cite

top

Danchin, Raphaël. "Low Mach number limit for viscous compressible flows." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 39.3 (2005): 459-475. <http://eudml.org/doc/245249>.

@article{Danchin2005,
abstract = {In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations when the Mach number $\epsilon $ goes to $0$. Besides, it is shown that the global existence for the limit equations entails the global existence for the compressible model with small $\epsilon $. The reader is referred to [R. Danchin, Ann. Sci. Éc. Norm. Sup. (2002)] for the detailed proof in the whole space case, and to [R. Danchin, Am. J. Math. 124 (2002) 1153–1219] for the case of periodic boundary conditions.},
author = {Danchin, Raphaël},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {low Mach number limit; compressible Navier-Stokes; slightly compressible; incompressible; well-prepared data; ill-prepared data; convergence to the incompressible Navier-Stokes equations; global existence},
language = {eng},
number = {3},
pages = {459-475},
publisher = {EDP-Sciences},
title = {Low Mach number limit for viscous compressible flows},
url = {http://eudml.org/doc/245249},
volume = {39},
year = {2005},
}

TY - JOUR
AU - Danchin, Raphaël
TI - Low Mach number limit for viscous compressible flows
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2005
PB - EDP-Sciences
VL - 39
IS - 3
SP - 459
EP - 475
AB - In this survey paper, we are concerned with the zero Mach number limit for compressible viscous flows. For the sake of (mathematical) simplicity, we restrict ourselves to the case of barotropic fluids and we assume that the flow evolves in the whole space or satisfies periodic boundary conditions. We focus on the case of ill-prepared data. Hence highly oscillating acoustic waves are likely to propagate through the fluid. We nevertheless state the convergence to the incompressible Navier-Stokes equations when the Mach number $\epsilon $ goes to $0$. Besides, it is shown that the global existence for the limit equations entails the global existence for the compressible model with small $\epsilon $. The reader is referred to [R. Danchin, Ann. Sci. Éc. Norm. Sup. (2002)] for the detailed proof in the whole space case, and to [R. Danchin, Am. J. Math. 124 (2002) 1153–1219] for the case of periodic boundary conditions.
LA - eng
KW - low Mach number limit; compressible Navier-Stokes; slightly compressible; incompressible; well-prepared data; ill-prepared data; convergence to the incompressible Navier-Stokes equations; global existence
UR - http://eudml.org/doc/245249
ER -

References

top
  1. [1] T. Alazard, Work in progress (2004). 
  2. [2] M. Cannone, Ondelettes, paraproduits et Navier-Stokes. Diderot Ed., Paris (1995). Zbl1049.35517MR1688096
  3. [3] R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141 (2000) 579–614. Zbl0958.35100
  4. [4] R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Rational Mech. Anal. 160 (2001) 1–39. Zbl1018.76037
  5. [5] R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differential Equations 26 (2001) 1183–1233. Zbl1007.35071
  6. [6] R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math. 124 (2002) 1153–1219. Zbl1048.35075
  7. [7] R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. Éc. Norm. Sup. (2002). Zbl1048.35054MR1886005
  8. [8] R. Danchin, On the uniqueness in critical spaces for compressible navier-stokes equations. Nonlinear Differential Equations and Applications, to appear (2002). Zbl1125.76061MR2138937
  9. [9] B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. Proc. Roy. Soc. London Ser. A, Math. Phys. Eng. Sci. 455 (1999) 2271–2279. Zbl0934.76080
  10. [10] B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. (2002). Zbl0992.35067
  11. [11] H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal. 16 (1964) 269–315. Zbl0126.42301
  12. [12] I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations. J. Math. Kyoto Univ. 40 (2000) 525–540. Zbl0997.35050
  13. [13] J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995) 50–68. Zbl0849.35064
  14. [14] T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652–672. Zbl0907.76073
  15. [15] D. Hoff, The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543–554. Zbl0907.35098
  16. [16] T. Kato, Strong L p -solutions of the Navier-Stokes equation in R m , with applications to weak solutions. Math. Z. 187 (1984) 471–480. Zbl0545.35073
  17. [17] M. Keel and T. Tao, Endpoint Strichartz estimates. Am. J. Math. 120 (1998) 955–980. Zbl0922.35028
  18. [18] S. Klainerman and A. Majda, Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629–651. Zbl0478.76091
  19. [19] H.-O. Kreiss, J. Lorenz and M.J. Naughton, Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations. Adv. Appl. Math. 12 (1991) 187–214. Zbl0728.76084
  20. [20] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1: Incompressible models. Oxford Clarendon Press (1996). Zbl0866.76002MR1422251
  21. [21] P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2: Compressible models. Oxford Clarendon Press (1998). Zbl0908.76004MR1637634
  22. [22] P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (9) 77 (1998) 585–627. Zbl0909.35101
  23. [23] P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris (1999). Zbl0937.35132MR1710123
  24. [24] N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire (2001). Zbl0991.35058MR1808029
  25. [25] A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20 (1980) 67–104. Zbl0429.76040
  26. [26] G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. Zbl0974.76072
  27. [27] G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106–183. Zbl1029.34035
  28. [28] S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476–512. Zbl0838.35071
  29. [29] S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986) 323–331. Zbl0618.76074

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.