Zero Mach number limit in critical spaces for compressible Navier–Stokes equations

Raphaël Danchin

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 1, page 27-75
  • ISSN: 0012-9593

How to cite

top

Danchin, Raphaël. "Zero Mach number limit in critical spaces for compressible Navier–Stokes equations." Annales scientifiques de l'École Normale Supérieure 35.1 (2002): 27-75. <http://eudml.org/doc/82565>.

@article{Danchin2002,
author = {Danchin, Raphaël},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {weakly compresible Navier-Stokes equations; incompressible Navier–Stokes equations; Mach number; regularity; Besov spaces},
language = {eng},
number = {1},
pages = {27-75},
publisher = {Elsevier},
title = {Zero Mach number limit in critical spaces for compressible Navier–Stokes equations},
url = {http://eudml.org/doc/82565},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Danchin, Raphaël
TI - Zero Mach number limit in critical spaces for compressible Navier–Stokes equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 1
SP - 27
EP - 75
LA - eng
KW - weakly compresible Navier-Stokes equations; incompressible Navier–Stokes equations; Mach number; regularity; Besov spaces
UR - http://eudml.org/doc/82565
ER -

References

top
  1. [1] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981) 209-246. Zbl0495.35024MR631751
  2. [2] Cannone M., Ondelettes, paraproduits et Navier–Stokes, Nouveaux essais, Diderot éditeurs, 1995. Zbl1049.35517MR1688096
  3. [3] Chemin J.-Y., Remarques sur l'existence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal.23 (1992) 20-28. Zbl0762.35063MR1145160
  4. [4] Chemin J.-Y., About Navier–Stokes system, Prépublication du Laboratoire d'analyse numérique de Paris 6, R96023, 1996. 
  5. [5] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math.77 (1999) 27-50. Zbl0938.35125MR1753481
  6. [6] Danchin R., Global existence in critical spaces for compressible Navier–Stokes equations, Inventiones Math.141 (2000) 579-614. Zbl0958.35100MR1779621
  7. [7] Danchin R., Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations26 (2001) 1183-1233. Zbl1007.35071MR1855277
  8. [8] Danchin R., Global existence in critical spaces for compressible viscous and heat-conductive gases, Arch. Rational Mech. Anal.160 (2001) 1-39. Zbl1018.76037MR1864120
  9. [9] Danchin R., Zero Mach number limit for compressible flows with periodic boundary conditions, submitted. Zbl1048.35075
  10. [10] Danchin R., On the uniquiness in critical spaces for compressible Navier–Stokes equations, Nonlinear Differential Equations Appl., to appear. Zbl1125.76061MR2138937
  11. [11] Desjardins B., Grenier E., Low Mach number limit of viscous compressible flows in the whole space, Roy. Soc. London Proc. Series A455 (1986) (1999) 2271-2279. Zbl0934.76080MR1702718
  12. [12] Desjardins B., Grenier E., Lions P.-L., Masmoudi N., Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl.78 (1999) 461-471. Zbl0992.35067MR1697038
  13. [13] Fabrie P., Galusinski C., The slightly compressible Navier–Stokes equations revisited, Preprint, Mathématiques Appliquées de Bordeaux, France, 1998. Zbl1027.35092MR1868354
  14. [14] Fujita H., Kato T., On the Navier–Stokes initial value problem I, Arch. Rational Mech. Anal.16 (1964) 269-315. Zbl0126.42301MR166499
  15. [15] Gallagher I., A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, Prépublication Université Paris-Sud, Mathématiques, 1999. MR1794519
  16. [16] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) 50-68. Zbl0849.35064MR1351643
  17. [17] Hagstrom T., Lorenz J., All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal.29 (1998) 652-672. Zbl0907.76073MR1617767
  18. [18] Hoff D., The zero-Mach limit of compressible flows, Comm. Math. Phys.192 (1998) 543-554. Zbl0907.35098MR1620511
  19. [19] Hoff D., Zumbrun K., Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow, Indiana Univ. Math. J.44 (1995) 603-676. Zbl0842.35076MR1355414
  20. [20] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) 955-980. Zbl0922.35028MR1646048
  21. [21] Klainerman S., Majda A., Compressible and incompressible fluids, Comm. Pure Appl. Math.35 (1982) 629-651. Zbl0478.76091MR668409
  22. [22] Kreiss H.-O., Lorenz J., Naughton M., Convergence of the solutions of the compressible to the solutions of the incompressible Navier–Stokes equations, Adv. Pure Appl. Math.12 (1991) 187-214. Zbl0728.76084MR1101207
  23. [23] Leray J., Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
  24. [24] Lin C., On the incompressible limit of the compressible Navier–Stokes equations, Comm. Partial Differential Equations20 (1995) 677-707. Zbl0816.35105MR1318085
  25. [25] Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol. 1. Incompressible Models, Oxford University Press, 1996. Zbl0866.76002MR1422251
  26. [26] Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998. Zbl0908.76004MR1637634
  27. [27] Lions P.-L., Masmoudi N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl.77 (1998) 585-627. Zbl0909.35101MR1628173
  28. [28] Lions P.-L., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris, Série I329 (1999) 387-392. Zbl0937.35132MR1710123
  29. [29] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematical Series, Vol. 1, Durham N.C., 1976. Zbl0356.46038MR461123
  30. [30] Runst T., Sickel W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter, Berlin, 1996. Zbl0873.35001MR1419319
  31. [31] Strichartz R., Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977) 705-774. Zbl0372.35001MR512086
  32. [32] Ukai S., The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ.26 (1986) 323-331. Zbl0618.76074MR849223

Citations in EuDML Documents

top
  1. Alexandre Dutrifoy, Limite incompressible de solutions du système d’Euler compressible 2-D dans certains cas mal préparés
  2. Raphaël Danchin, Bernard Ducomet, Résultats d’existence globale et limites asymptotiques pour un modèle de fluide radiatif
  3. Raphaël Danchin, Fluides légèrement compressibles et limite incompressible
  4. Raphaël Danchin, Low Mach number limit for viscous compressible flows
  5. Raphaël Danchin, Low Mach number limit for viscous compressible flows
  6. Thomas Alazard, Alentours de la limite incompressible
  7. Isabelle Gallagher, Résultats récents sur la limite incompressible

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.