Zero Mach number limit in critical spaces for compressible Navier–Stokes equations
Annales scientifiques de l'École Normale Supérieure (2002)
- Volume: 35, Issue: 1, page 27-75
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDanchin, Raphaël. "Zero Mach number limit in critical spaces for compressible Navier–Stokes equations." Annales scientifiques de l'École Normale Supérieure 35.1 (2002): 27-75. <http://eudml.org/doc/82565>.
@article{Danchin2002,
author = {Danchin, Raphaël},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {weakly compresible Navier-Stokes equations; incompressible Navier–Stokes equations; Mach number; regularity; Besov spaces},
language = {eng},
number = {1},
pages = {27-75},
publisher = {Elsevier},
title = {Zero Mach number limit in critical spaces for compressible Navier–Stokes equations},
url = {http://eudml.org/doc/82565},
volume = {35},
year = {2002},
}
TY - JOUR
AU - Danchin, Raphaël
TI - Zero Mach number limit in critical spaces for compressible Navier–Stokes equations
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 1
SP - 27
EP - 75
LA - eng
KW - weakly compresible Navier-Stokes equations; incompressible Navier–Stokes equations; Mach number; regularity; Besov spaces
UR - http://eudml.org/doc/82565
ER -
References
top- [1] Bony J.-M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup.14 (1981) 209-246. Zbl0495.35024MR631751
- [2] Cannone M., Ondelettes, paraproduits et Navier–Stokes, Nouveaux essais, Diderot éditeurs, 1995. Zbl1049.35517MR1688096
- [3] Chemin J.-Y., Remarques sur l'existence globale pour le système de Navier–Stokes incompressible, SIAM J. Math. Anal.23 (1992) 20-28. Zbl0762.35063MR1145160
- [4] Chemin J.-Y., About Navier–Stokes system, Prépublication du Laboratoire d'analyse numérique de Paris 6, R96023, 1996.
- [5] Chemin J.-Y., Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math.77 (1999) 27-50. Zbl0938.35125MR1753481
- [6] Danchin R., Global existence in critical spaces for compressible Navier–Stokes equations, Inventiones Math.141 (2000) 579-614. Zbl0958.35100MR1779621
- [7] Danchin R., Local theory in critical spaces for compressible viscous and heat-conductive gases, Comm. Partial Differential Equations26 (2001) 1183-1233. Zbl1007.35071MR1855277
- [8] Danchin R., Global existence in critical spaces for compressible viscous and heat-conductive gases, Arch. Rational Mech. Anal.160 (2001) 1-39. Zbl1018.76037MR1864120
- [9] Danchin R., Zero Mach number limit for compressible flows with periodic boundary conditions, submitted. Zbl1048.35075
- [10] Danchin R., On the uniquiness in critical spaces for compressible Navier–Stokes equations, Nonlinear Differential Equations Appl., to appear. Zbl1125.76061MR2138937
- [11] Desjardins B., Grenier E., Low Mach number limit of viscous compressible flows in the whole space, Roy. Soc. London Proc. Series A455 (1986) (1999) 2271-2279. Zbl0934.76080MR1702718
- [12] Desjardins B., Grenier E., Lions P.-L., Masmoudi N., Incompressible limit for solutions of the isentropic Navier–Stokes equations with Dirichlet boundary conditions, J. Math. Pures Appl.78 (1999) 461-471. Zbl0992.35067MR1697038
- [13] Fabrie P., Galusinski C., The slightly compressible Navier–Stokes equations revisited, Preprint, Mathématiques Appliquées de Bordeaux, France, 1998. Zbl1027.35092MR1868354
- [14] Fujita H., Kato T., On the Navier–Stokes initial value problem I, Arch. Rational Mech. Anal.16 (1964) 269-315. Zbl0126.42301MR166499
- [15] Gallagher I., A remark on smooth solutions of the weakly compressible periodic Navier–Stokes equations, Prépublication Université Paris-Sud, Mathématiques, 1999. MR1794519
- [16] Ginibre J., Velo G., Generalized Strichartz inequalities for the wave equation, J. Funct. Anal.133 (1995) 50-68. Zbl0849.35064MR1351643
- [17] Hagstrom T., Lorenz J., All-time existence of classical solutions for slightly compressible flows, SIAM J. Math. Anal.29 (1998) 652-672. Zbl0907.76073MR1617767
- [18] Hoff D., The zero-Mach limit of compressible flows, Comm. Math. Phys.192 (1998) 543-554. Zbl0907.35098MR1620511
- [19] Hoff D., Zumbrun K., Multi-dimensional diffusion waves for the Navier–Stokes equations of compressible flow, Indiana Univ. Math. J.44 (1995) 603-676. Zbl0842.35076MR1355414
- [20] Keel M., Tao T., Endpoint Strichartz estimates, Amer. J. Math.120 (1998) 955-980. Zbl0922.35028MR1646048
- [21] Klainerman S., Majda A., Compressible and incompressible fluids, Comm. Pure Appl. Math.35 (1982) 629-651. Zbl0478.76091MR668409
- [22] Kreiss H.-O., Lorenz J., Naughton M., Convergence of the solutions of the compressible to the solutions of the incompressible Navier–Stokes equations, Adv. Pure Appl. Math.12 (1991) 187-214. Zbl0728.76084MR1101207
- [23] Leray J., Sur le mouvement d'un liquide visqueux remplissant l'espace, Acta Math.63 (1934) 193-248. MR1555394JFM60.0726.05
- [24] Lin C., On the incompressible limit of the compressible Navier–Stokes equations, Comm. Partial Differential Equations20 (1995) 677-707. Zbl0816.35105MR1318085
- [25] Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol. 1. Incompressible Models, Oxford University Press, 1996. Zbl0866.76002MR1422251
- [26] Lions P.-L., Mathematical Topics in Fluid Dynamics, Vol. 2. Compressible Models, Oxford University Press, 1998. Zbl0908.76004MR1637634
- [27] Lions P.-L., Masmoudi N., Incompressible limit for a viscous compressible fluid, J. Math. Pures Appl.77 (1998) 585-627. Zbl0909.35101MR1628173
- [28] Lions P.-L., Masmoudi N., Une approche locale de la limite incompressible, C. R. Acad. Sci. Paris, Série I329 (1999) 387-392. Zbl0937.35132MR1710123
- [29] Peetre J., New Thoughts on Besov Spaces, Duke University Mathematical Series, Vol. 1, Durham N.C., 1976. Zbl0356.46038MR461123
- [30] Runst T., Sickel W., Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, de Gruyter Series in Nonlinear Analysis and Applications, 3, Walter de Gruyter, Berlin, 1996. Zbl0873.35001MR1419319
- [31] Strichartz R., Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations, Duke Math. J.44 (1977) 705-774. Zbl0372.35001MR512086
- [32] Ukai S., The incompressible limit and the initial layer of the compressible Euler equation, J. Math. Kyoto Univ.26 (1986) 323-331. Zbl0618.76074MR849223
Citations in EuDML Documents
top- Alexandre Dutrifoy, Limite incompressible de solutions du système d’Euler compressible 2-D dans certains cas mal préparés
- Raphaël Danchin, Bernard Ducomet, Résultats d’existence globale et limites asymptotiques pour un modèle de fluide radiatif
- Raphaël Danchin, Fluides légèrement compressibles et limite incompressible
- Raphaël Danchin, Low Mach number limit for viscous compressible flows
- Raphaël Danchin, Low Mach number limit for viscous compressible flows
- Thomas Alazard, Alentours de la limite incompressible
- Isabelle Gallagher, Résultats récents sur la limite incompressible
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.