### A note on the free convection boundary layer on a vertical surface with prescribed heat flux at small Prandtl number.

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

This paper is aimed at the description of the multi-dimensional finite volume solver EULER, which has been developed for the numerical solution of the compressible Euler equations during several last years. The present overview of numerical schemes and the explanation of numerical techniques and tricks which have been used for EULER could be of certain interest not only for registered users but also for numerical mathematicians who have decided to implement a finite volume solver themselves. This...

We propose and analyze a semi Lagrangian method for the convection-diffusion equation. Error estimates for both semi and fully discrete finite element approximations are obtained for convection dominated flows. The estimates are posed in terms of the projections constructed in [Chrysafinos and Walkington, SIAM J. Numer. Anal. 43 (2006) 2478–2499; Chrysafinos and Walkington, SIAM J. Numer. Anal. 44 (2006) 349–366] and the dependence of various constants upon the diffusion parameter is ...

There are very few reference solutions in the literature on non-Boussinesq natural convection flows. We propose here a test case problem which extends the well-known De Vahl Davis differentially heated square cavity problem to the case of large temperature differences for which the Boussinesq approximation is no longer valid. The paper is split in two parts: in this first part, we propose as yet unpublished reference solutions for cases characterized by a non-dimensional temperature difference of...

In the second part of the paper, we compare the solutions produced in the framework of the conference “Mathematical and numerical aspects of low Mach number flows” organized by INRIA and MAB in Porquerolles, June 2004, to the reference solutions described in Part 1. We make some recommendations on how to produce good quality solutions, and list a number of pitfalls to be avoided.