Some regularity results for minimal crystals
L. Ambrosio; M. Novaga; E. Paolini
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 69-103
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] F.J. Almgren, Optimal isoperimetric inequalities. Indiana U. Math. J. 35 (1986) 451-547. Zbl0585.49030MR855173
- [2] F.J. Almgren and J. Taylor, Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom. 42 (1995) 1-22. Zbl0867.58020MR1350693
- [3] F.J. Almgren, J. Taylor and L. Wang, Curvature-driven flows: A variational approach. SIAM J. Control Optim. 31 (1993) 387-437. Zbl0783.35002MR1205983
- [4] M. Amar and G. Bellettini, A notion of total variation depending on a metric with discontinuous coefficients. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 91-133. Zbl0842.49016MR1259102
- [5] L. Ambrosio, Corso introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime. Scuola Normale Superiore of Pisa (1997). Zbl0977.49028MR1736268
- [6] L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems. Oxford U. P. (2000). Zbl0957.49001MR1857292
- [7] L. Ambrosio, V. Caselles, S. Masnou and J.M. Morel, Connected Components of Sets of Finite Perimeter and Applications to Image Processing. J. EMS 3 (2001) 213-266. Zbl0981.49024MR1812124
- [8] L. Ambrosio and E. Paolini, Partial regularity for the quasi minimizers of perimeter. Ricerche Mat. XLVIII (1999) 167-186. Zbl0943.49032MR1765683
- [9] G. Bellettini, M. Paolini and S. Venturini, Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl. 170 (1996) 329-359. Zbl0890.49020MR1441625
- [10] E. Bombieri, Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78 (1982) 99-130. Zbl0485.49024MR648941
- [11] H. Brezis, Opérateurs Maximaux Monotones. North Holland, Amsterdam (1973).
- [12] Y.D. Burago and V.A. Zalgaller, Geometric inequalities. Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften XIV (1988). Zbl0633.53002MR936419
- [13] G. David and S. Semmes, Uniform rectifiability and quasiminimizing sets of arbitrary codimension. Mem. Amer. Math. Soc. 687 (2000). Zbl0966.49024MR1683164
- [14] E. De Giorgi, Nuovi teoremi relativi alle misure -dimensionali in uno spazio a dimensioni. Ricerche Mat. 4 (1955) 95-113. Zbl0066.29903MR74499
- [15] H. Federer, A note on the Gauss–Green theorem. Proc. Amer. Math. Soc. 9 (1958) 447-451. Zbl0087.27302
- [16] H. Federer, Geometric Measure Theory. Springer–Verlag, Berlin (1969). Zbl0176.00801
- [17] W.H. Fleming, Functions with generalized gradient and generalized surfaces. Ann. Mat. 44 (1957) 93-103. Zbl0082.26701MR95923
- [18] I. Fonseca, The Wulff theorem revisited. Proc. Roy. Soc. London 432 (1991) 125-145. Zbl0725.49017MR1116536
- [19] I. Fonseca and S. Müller, A uniqueness proof for the Wulff theorem. Proc. Roy. Soc. Edinburgh 119 (1991) 125-136. Zbl0752.49019MR1130601
- [20] E. Giusti, Minimal surfaces and functions of bounded variation. Birkhäuser, Boston-Basel-Stuttgart, Monogr. in Math. 80 (1984) XII. Zbl0545.49018MR775682
- [21] B. Kirchheim, Rectifiable metric spaces: Local structure and regularity of the Hausdorff measure. Proc. AMS 121 (1994) 113-123. Zbl0806.28004MR1189747
- [22] S. Luckhaus and L. Modica, The Gibbs–Thompson relation within the gradient theory of phase transitions. Arch. Rational Mech. Anal. 107 (1989) 71-83. Zbl0681.49012
- [23] F. Morgan, The cone over the Clifford torus in is -minimizing. Math. Ann. 289 (1991) 341-354. Zbl0725.49013MR1092180
- [24] F. Morgan, C. French and S. Greenleaf, Wulff clusters in . J. Geom. Anal. 8 (1998) 97-115. Zbl0934.49024MR1704570
- [25] A.P. Morse, Perfect blankets. Trans. Amer. Math. Soc. 61 (1947) 418-442. Zbl0031.38702MR20618
- [26] J. Taylor, Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.) 84 (1978) 568-588. Zbl0392.49022MR493671
- [27] J. Taylor, Motion of curves by crystalline curvature, including triple junctions and boundary points. Differential Geometry, Proc. Symp. Pure Math. 54 (1993) 417-438. Zbl0823.49028MR1216599
- [28] J. Taylor, Unique structure of solutions to a class of nonelliptic variational problems. Proc. Symp. Pure Math. 27 (1975) 419-427. Zbl0317.49054MR388225
- [29] J. Taylor and J.W. Cahn, Catalog of saddle shaped surfaces in crystals. Acta Metall. 34 (1986) 1-12.