An approximation theorem for sequences of linear strains and its applications

Kewei Zhang

ESAIM: Control, Optimisation and Calculus of Variations (2004)

  • Volume: 10, Issue: 2, page 224-242
  • ISSN: 1292-8119

Abstract

top
We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in L 1 by the sequence of linear strains of mapping bounded in Sobolev space W 1 , p . We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.

How to cite

top

Zhang, Kewei. "An approximation theorem for sequences of linear strains and its applications." ESAIM: Control, Optimisation and Calculus of Variations 10.2 (2004): 224-242. <http://eudml.org/doc/245938>.

@article{Zhang2004,
abstract = {We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in $L^1$ by the sequence of linear strains of mapping bounded in Sobolev space $W^\{1,p\}$. We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.},
author = {Zhang, Kewei},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {linear strains; maximal function; approximate sequences; quasiconvex envelope; quasiconvex hull},
language = {eng},
number = {2},
pages = {224-242},
publisher = {EDP-Sciences},
title = {An approximation theorem for sequences of linear strains and its applications},
url = {http://eudml.org/doc/245938},
volume = {10},
year = {2004},
}

TY - JOUR
AU - Zhang, Kewei
TI - An approximation theorem for sequences of linear strains and its applications
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2004
PB - EDP-Sciences
VL - 10
IS - 2
SP - 224
EP - 242
AB - We establish an approximation theorem for a sequence of linear elastic strains approaching a compact set in $L^1$ by the sequence of linear strains of mapping bounded in Sobolev space $W^{1,p}$. We apply this result to establish equalities for semiconvex envelopes for functions defined on linear strains via a construction of quasiconvex functions with linear growth.
LA - eng
KW - linear strains; maximal function; approximate sequences; quasiconvex envelope; quasiconvex hull
UR - http://eudml.org/doc/245938
ER -

References

top
  1. [1] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations. Arch. Ration. Mech. Anal. 86 (1984) 125-145. Zbl0565.49010MR751305
  2. [2] R.A. Adams, Sobolev Spaces. Academic Press (1975). Zbl0314.46030MR450957
  3. [3] L. Ambrosio, A. Coscia and G. Dal Maso, Fine properties of functions with bounded deformation. Arch. Ration. Mech. Anal. 139 (1997) 201-238. Zbl0890.49019MR1480240
  4. [4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity. Arch. Ration. Mech. Anal. 63 (1977) 337-403. Zbl0368.73040MR475169
  5. [5] J.M. Ball, A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, M. Rascle, D. Serre and M. Slemrod Eds., Springer-Verlag (1989) 207-215. Zbl0991.49500MR1036070
  6. [6] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100 (1987) 13-52. Zbl0629.49020MR906132
  7. [7] J.M. Ball and R.D. James, Proposed experimental tests of a theory of fine microstructures and the two-well problem. Phil. R. Soc. Lond. Sect. A 338 (1992) 389-450. Zbl0758.73009
  8. [8] J.M. Ball and K. Zhang, Lower semicontinuity of multiple integrals and the biting lemma. Proc. R. Soc. Edinb. Sect. A 114 (1990) 367-379. Zbl0716.49011MR1055554
  9. [9] K. Bhattacharya, Comparison of the geometrically nonlinear and linear theories of martensitic transformation. Continuum Mech. Thermodyn. 5 (1993) 205-242. Zbl0780.73005MR1236099
  10. [10] K. Bhattacharya, N.B. Firoozy, R.D. James and R.V. Kohn, Restrictions on Microstructures. Proc. R. Soc. Edinb. Sect. A 124 (1994) 843-878. Zbl0808.73063MR1303758
  11. [11] B. Dacorogna, Direct Methods in the Calculus of Variations. Springer (1989). Zbl0703.49001MR990890
  12. [12] F.B. Ebobisse, Luzin-type approximation of B D functions. Proc. R. Soc. Edin. Sect. A 129 (1999) 697-705. Zbl0939.49012MR1718471
  13. [13] F.B. Ebobisse, On lower semicontinuity of integral functionals in L D ( Ω ) . Preprint Univ. Pisa. Zbl1027.49014MR1795030
  14. [14] I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland (1976). Zbl0322.90046MR463994
  15. [15] I. Fonseca and S. Müller, A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal. 30 (1999) 1355-1390. Zbl0940.49014MR1718306
  16. [16] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Second edn, Academic Press (1983). Zbl0562.35001MR737190
  17. [17] Z. Iqbal, Variational Methods in Solid Mechanics. Ph.D. thesis, University of Oxford (1999). 
  18. [18] A.G. Khachaturyan, Theory of Structural Transformations in Solids. John Wiley and Sons (1983). 
  19. [19] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients. Arch. Ration. Mech. Anal. 115 (1991) 329-365. Zbl0754.49020MR1120852
  20. [20] V.A. Kondratev and O.A. Oleinik, Boundary-value problems for the system of elasticity theory in unbounded domains. Russian Math. Survey 43 (1988) 65-119. Zbl0669.73005MR971465
  21. [21] R.V. Kohn, New estimates for deformations in terms of their strains. Ph.D. thesis, Princeton University (1979). 
  22. [22] R.V. Kohn, The relaxation of a double-well energy. Cont. Mech. Therm. 3 (1991) 981-1000. Zbl0825.73029MR1122017
  23. [23] J. Kristensen, Lower semicontinuity in spaces of weakly differentiable functions. J. Math. Ann. 313 (1999) 653-710. Zbl0924.49012MR1686943
  24. [24] K. de Leeuw and H. Mirkil, Majorations dans L des opérateurs différentiels à coefficients constants. C. R. Acad. Sci. Paris 254 (1962) 2286-2288. Zbl0112.33002MR139964
  25. [25] F.C. Liu, A Luzin type property of Sobolev functions. Ind. Univ. Math. J. 26 (1977) 645-651. Zbl0368.46036MR450488
  26. [26] C.B. Jr Morrey, Multiple integrals in the calculus of variations. Springer (1966). Zbl0142.38701MR202511
  27. [27] S. Müller, A sharp version of Zhang’s theorem on truncating sequences of gradients. Trans. AMS 351 (1999) 4585-4597. Zbl0942.49013
  28. [28] S. Müller and V. Šverák, Attainment results for the two-well problem by convex integration, in Geometric analysis and the calculus of variations, Internat. Press, Cambridge, MA (1996) 239-251. Zbl0930.35038MR1449410
  29. [29] R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). Zbl0193.18401MR274683
  30. [30] E.M. Stein, Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970). Zbl0207.13501MR290095
  31. [31] V. Šverák, Quasiconvex functions with subquadratic growth. Proc. R. Soc. Lond. Sect. A 433 (1991) 723-725. Zbl0741.49016MR1116970
  32. [32] V. Šverák, Rank one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb. Sect. A 120 (1992) 185-189. Zbl0777.49015MR1149994
  33. [33] V. Šverák, On the problem of two wells in Microstructure and Phase Transition. IMA Vol. Math. Appl. 54 (1994) 183-189. Zbl0797.73079MR1320537
  34. [34] L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symp., R.J. Knops Ed., IV (1979) 136-212. Zbl0437.35004MR584398
  35. [35] R. Temam, Problèmes Mathématiques en Plasticité. Gauthier-Villars (1983). Zbl0547.73026MR711964
  36. [36] J.H. Wells and L.R. Williams, Embeddings and extensions in analysis. Springer-Verlag (1975). Zbl0324.46034MR461107
  37. [37] B.-S. Yan, On W 1 , p -quasiconvex hulls of set of matrices. Preprint. 
  38. [38] K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity. Ann. Sc. Norm Sup. Pisa. Serie IV XIX (1992) 313-326. Zbl0778.49015MR1205403
  39. [39] K.-W. Zhang, Quasiconvex functions, S O ( n ) and two elastic wells. Anal. Nonlin. H. Poincaré 14 (1997) 759-785. Zbl0918.49014MR1482901
  40. [40] K.-W. Zhang, On the structure of quasiconvex hulls. Anal. Nonlin. H. Poincaré 15 (1998) 663-686. Zbl0917.49014MR1650974
  41. [41] K.-W. Zhang, On some quasiconvex functions with linear growth. J. Convex Anal. 5 (1988) 133-146. Zbl0915.49008MR1649465
  42. [42] K.-W. Zhang, Rank-one connections at infinity and quasiconvex hulls. J. Convex Anal. 7 (2000) 19-45. Zbl0976.49009MR1773175
  43. [43] K.-W. Zhang, On some semiconvex envelopes in the calculus of variations. NoDEA – Nonlinear Diff. Equ. Appl. 9 (2002) 37-44. Zbl1012.49012
  44. [44] K.-W. Zhang, On equality of relaxations for linear elastic strains. Commun. Pure Appl. Anal. 1 (2002) 565-573. Zbl1032.49019MR1942285

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.