Quasiconvex functions, S O ( n ) and two elastic wells

Kewei Zhang

Annales de l'I.H.P. Analyse non linéaire (1997)

  • Volume: 14, Issue: 6, page 759-785
  • ISSN: 0294-1449

How to cite

top

Zhang, Kewei. "Quasiconvex functions, $SO(n)$ and two elastic wells." Annales de l'I.H.P. Analyse non linéaire 14.6 (1997): 759-785. <http://eudml.org/doc/78427>.

@article{Zhang1997,
author = {Zhang, Kewei},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quasiconvexity; relaxation; Young measure},
language = {eng},
number = {6},
pages = {759-785},
publisher = {Gauthier-Villars},
title = {Quasiconvex functions, $SO(n)$ and two elastic wells},
url = {http://eudml.org/doc/78427},
volume = {14},
year = {1997},
}

TY - JOUR
AU - Zhang, Kewei
TI - Quasiconvex functions, $SO(n)$ and two elastic wells
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1997
PB - Gauthier-Villars
VL - 14
IS - 6
SP - 759
EP - 785
LA - eng
KW - quasiconvexity; relaxation; Young measure
UR - http://eudml.org/doc/78427
ER -

References

top
  1. [AF] E. Acerbi and N. Fusco, Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., Vol. 86, 1984, pp. 125-145. Zbl0565.49010MR751305
  2. [Bd] E.J. Balder, A general approach to lower semicontinuity and lower closure in optimal control theory, SIAM J. Control and Optimization, Vol. 22, 1984, pp. 570-597. Zbl0549.49005MR747970
  3. [BL] H. Berliocchi and J.M. Lasry, Intégrandes normales et mesures paramétrées en calcul des variations, Bull. Soc. Math. France, Vol. 101, pp. 129-184. Zbl0282.49041MR344980
  4. [Bl1] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Vol. 63, 1977, pp. 337-403. Zbl0368.73040MR475169
  5. [Bl2] J.M. Ball, Constitutive inequalities and existence theorems in nonlinear elasticity, in "Nonlinear Analysis and Mechanics: Heriot - Watt Symposium." Vol. 1 (edited by R. mJ. Knops), Pitman, London, 1977. Zbl0377.73043MR478899
  6. [Bl3] J.M. Ball, A version of the fundamental theorem of Young measures, in Partial Differential Equations and Continuum Models of Phase Transitions, (edited by M. Rascle, D. Serre and M. Slemrod), 1989, 207-215, Springer-Verlag. Zbl0991.49500MR1036070
  7. [BCO] J.M. Ball, J.C. Currie and P.J. Olver, Null Lagrangians, weak continuity, and variational problems of arbitrary order, J. Functional Anal., Vol. 41, 1981, pp. 135-174. Zbl0459.35020MR615159
  8. [BFJK] K. Bhattacharya, N.B. Firoozy, R.D. James and R.V. Kohn, Restrictions on Microstructures, Proc. Royal Soc. Edinburgh A Vol. 124, 1994, pp. 843-878 Zbl0808.73063MR1303758
  9. [BJ1] J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., Vol. 100, 1987, pp. 13-52. Zbl0629.49020MR906132
  10. [BJ2] J.M. Ball and R.D. James; Proposed experimental tests of a theory of fine microstructures and the two-well problem, Phil. Royal Soc. Lon., Vol. 338A, 1992, pp. 389-450. Zbl0758.73009
  11. [CK] M. Chipot and D. Kinderlehrer, Equilibrium configurations of crystals, Arch. Rational Mech. Anal., Vol. 103, 1988, pp. 237-277. Zbl0673.73012MR955934
  12. [Da1] B. Dacorogna, Weak Continuity and Weak Lower Semicontinuity of Nonlinear Functionals, Lectures Notes in Math., Springer-Verlag, Berlin, Vol. 922, 1980. Zbl0676.46035MR658130
  13. [Da2] B. Dacorogna, Direct Methods in the Calculus of Variations, Springer, 1989. Zbl0703.49001MR990890
  14. [DR] H. Le Dret and A. Raoult, Enveloppe quasi-convexe de la densité d'énergie de Saint Venant-Kirchhoff, C. R. Acad. Sci. Paris, Série I, Vol. 318, 1994, pp. 93-98. Zbl0792.73034MR1260543
  15. [ET] I. Ekeland and R. Temam, Convex Aanlysis and Variational Problems, North-Holland, 976. Zbl0322.90046
  16. [F] I. Fonseca, The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pures et Appl., Vol. 67, 1988, pp. 175-195. Zbl0718.73075MR949107
  17. [K] R.V. Kohn, The relaxation of a double-well energy, Cont. Mech. Therm., Vol. 3, 1991, pp. 981-1000. Zbl0825.73029MR1122017
  18. [KP] D. Kinderlehrer and P. Pedregal, Characterizations of Young measures generated by gradients, Arch. Rational Mech. Anal., Vol. 115, 1991, pp. 329-365. Zbl0754.49020MR1120852
  19. [KS] R.V. Kohn and D. Strang, Optimal design and relaxation of variational problems I, II, III, Comm. Pure Appl. Math., Vol. 39, 1986, pp. 113-137, 139-182, 353-377. Zbl0609.49008MR820342
  20. [L] F.C. Liu, A Luzin type property of Sobolev functions, Ind. Univ. Math. J., Vol. 26, 1977, pp. 645-651. Zbl0368.46036MR450488
  21. [Ma] J. Matos, Young measures and the absence of fine microstructures in the α — β quarts phase transition, preprint. 
  22. [Mo] C.B. Jr Morrey, Multiple integrals in the calculus of variations, Springer, 1966. Zbl0142.38701MR202511
  23. [Sv] V. Sverák, On the problem of two wells, preprint. MR1320537
  24. [St] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton , 1970. Zbl0207.13501MR290095
  25. [T] L. Tartar, Compensated compactness and applications to partial differential equations, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium (edited by R. J. Knops) Vol. IV, 1979, pp. 136-212. Zbl0437.35004MR584398
  26. [Z] K.-W. Zhang, A construction of quasiconvex functions with linear growth at infinity, Ann. Sc. Norm Sup. Pisa, Serie IV, Vol. XIX, 1992, pp. 313-326. Zbl0778.49015MR1205403

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.