Ideal convergence and divergence of nets in ( ) -groups

Antonio Boccuto; Xenofon Dimitriou; Nikolaos Papanastassiou

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 1073-1083
  • ISSN: 0011-4642

Abstract

top
In this paper we introduce the - and * -convergence and divergence of nets in ( ) -groups. We prove some theorems relating different types of convergence/divergence for nets in ( ) -group setting, in relation with ideals. We consider both order and ( D ) -convergence. By using basic properties of order sequences, some fundamental properties, Cauchy-type characterizations and comparison results are derived. We prove that * -convergence/divergence implies -convergence/divergence for every ideal, admissible for the set of indexes with respect to which the net involved is directed, and we investigate a class of ideals for which the converse implication holds. Finally we pose some open problems.

How to cite

top

Boccuto, Antonio, Dimitriou, Xenofon, and Papanastassiou, Nikolaos. "Ideal convergence and divergence of nets in $(\ell )$-groups." Czechoslovak Mathematical Journal 62.4 (2012): 1073-1083. <http://eudml.org/doc/246170>.

@article{Boccuto2012,
abstract = {In this paper we introduce the $\{\mathcal \{I\}\}$- and $\{\mathcal \{I\}\}^*$-convergence and divergence of nets in $(\ell )$-groups. We prove some theorems relating different types of convergence/divergence for nets in $(\ell )$-group setting, in relation with ideals. We consider both order and $(D)$-convergence. By using basic properties of order sequences, some fundamental properties, Cauchy-type characterizations and comparison results are derived. We prove that $\{\mathcal \{I\}\}^*$-convergence/divergence implies $\{\mathcal \{I\}\}$-convergence/divergence for every ideal, admissible for the set of indexes with respect to which the net involved is directed, and we investigate a class of ideals for which the converse implication holds. Finally we pose some open problems.},
author = {Boccuto, Antonio, Dimitriou, Xenofon, Papanastassiou, Nikolaos},
journal = {Czechoslovak Mathematical Journal},
keywords = {net; $(\ell )$-group; ideal; ideal order; $(D)$-convergence; ideal divergence; net; -group; ideal order; -convergence; ideal divergence},
language = {eng},
number = {4},
pages = {1073-1083},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Ideal convergence and divergence of nets in $(\ell )$-groups},
url = {http://eudml.org/doc/246170},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Boccuto, Antonio
AU - Dimitriou, Xenofon
AU - Papanastassiou, Nikolaos
TI - Ideal convergence and divergence of nets in $(\ell )$-groups
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 1073
EP - 1083
AB - In this paper we introduce the ${\mathcal {I}}$- and ${\mathcal {I}}^*$-convergence and divergence of nets in $(\ell )$-groups. We prove some theorems relating different types of convergence/divergence for nets in $(\ell )$-group setting, in relation with ideals. We consider both order and $(D)$-convergence. By using basic properties of order sequences, some fundamental properties, Cauchy-type characterizations and comparison results are derived. We prove that ${\mathcal {I}}^*$-convergence/divergence implies ${\mathcal {I}}$-convergence/divergence for every ideal, admissible for the set of indexes with respect to which the net involved is directed, and we investigate a class of ideals for which the converse implication holds. Finally we pose some open problems.
LA - eng
KW - net; $(\ell )$-group; ideal; ideal order; $(D)$-convergence; ideal divergence; net; -group; ideal order; -convergence; ideal divergence
UR - http://eudml.org/doc/246170
ER -

References

top
  1. Athanassiadou, E., Boccuto, A., Dimitriou, X., Papanastassiou, N., 10.2298/FIL1202397A, Filomat 26 (2012), 397-405. (2012) MR3097937DOI10.2298/FIL1202397A
  2. Boccuto, A., Egorov property and weak σ -distributivity in Riesz spaces, Acta Math. (Nitra) 6 (2003), 61-66. (2003) 
  3. Boccuto, A., Candeloro, D., 10.1006/jmaa.2001.7715, J. Math. Anal. Appl. 265 (2002), 170-194. (2002) Zbl1006.28012MR1874264DOI10.1006/jmaa.2001.7715
  4. Boccuto, A., Candeloro, D., Uniform boundedness theorems in Riesz spaces, Atti Semin. Mat. Fis. Univ. Modena Reggio Emilia 52 (2004), 369-382. (2004) Zbl1115.28011MR2152821
  5. Boccuto, A., Candeloro, D., 10.1016/j.ins.2008.11.001, Inf. Sci. 179 (2009), 2891-2902. (2009) Zbl1185.28016MR2547758DOI10.1016/j.ins.2008.11.001
  6. Boccuto, A., Candeloro, D., Defining limits by means of integrals, Oper. Theory Adv. Appl. 201 (2010), 79-87. (2010) Zbl1248.28018MR2743976
  7. Boccuto, A., Das, P., Dimitriou, X., Papanastassiou, N., Ideal exhaustiveness, weak convergence and weak compactness in Banach spaces, Real Anal. Exch. 37 (2012), 409-430. (2012) MR3080600
  8. Boccuto, A., Dimitriou, X., Papanastassiou, N., Unconditional convergence in lattice groups with respect to ideals, Commentat. Math. 50 (2010), 161-174. (2010) Zbl1234.28014MR2789284
  9. Boccuto, A., Dimitriou, X., Papanastassiou, N., Brooks-Jewett-type theorems for the pointwise ideal convergence of measures with values in ( l ) -groups, Tatra Mt. Math. Publ. 49 (2011), 17-26. (2011) MR2865793
  10. Boccuto, A., Dimitriou, X., Papanastassiou, N., 10.2478/s12175-012-0053-6, Math. Slovaca 62 (2012), 1-23. (2012) MR2981828DOI10.2478/s12175-012-0053-6
  11. Boccuto, A., Dimitriou, X., Papanastassiou, N., Wilczyński, W., Ideal exhaustiveness, continuity and ( α ) -convergence for lattice group-valued functions, Int. J. Pure Appl. Math. 70 (2011), 211-227. (2011) Zbl1221.28021MR2848411
  12. Boccuto, A., Riečan, B., Vrábelová, M., Kurzweil-Henstock Integral in Riesz Spaces, Bentham Science Publ., Singapore (2009). (2009) 
  13. Činčura, J., Šalát, T., Sleziak, M., Toma, V., Sets of statistical cluster points and -cluster points, Real Anal. Exch. 30 (2004-2005), 565-580. (2004) MR2177419
  14. Das, P., Ghosal, S. K., 10.1016/j.topol.2010.02.003, Topology Appl. 157 (2010), 1152-1156. (2010) Zbl1191.54004MR2607080DOI10.1016/j.topol.2010.02.003
  15. Das, P., Ghosal, S. K., 10.1016/j.camwa.2010.01.027, Comput. Math. Appl. 59 (2010), 2597-2600. (2010) MR2607963DOI10.1016/j.camwa.2010.01.027
  16. Das, P., Kostyrko, P., Wilczyński, W., Malik, P., 10.2478/s12175-008-0096-x, Math. Slovaca 58 (2008), 605-620. (2008) Zbl1199.40026MR2434680DOI10.2478/s12175-008-0096-x
  17. Das, P., Lahiri, B. K., and * -convergence of nets, Real Anal. Exch. 33 (2007-2008), 431-442. (2007) MR2458259
  18. Das, P., Malik, P., On extremal -limit points of double sequences, Tatra Mt. Math. Publ. 40 (2008), 91-102. (2008) MR2440625
  19. Demirci, K., I -limit superior and limit inferior, Math. Commun. 6 (2001), 165-172. (2001) Zbl0992.40002MR1908336
  20. Dems, K., On -Cauchy sequences, Real Anal. Exch. 30 (2004-2005), 123-128. (2004) MR2126799
  21. Gregoriades, V., Papanastassiou, N., 10.1016/j.topol.2008.02.005, Topology Appl. 155 (2008), 1111-1128. (2008) Zbl1141.26001MR2419370DOI10.1016/j.topol.2008.02.005
  22. Gürdal, M., Şahiner, A., Extremal -limit points of double sequences, Appl. Math. E-Notes 8 (2008), 131-137. (2008) MR2391201
  23. Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M., -convergence and extremal -limit points, Math. Slovaca 55 (2005), 443-464. (2005) MR2181783
  24. Kostyrko, P., Šalát, T., Wilczyński, W., I -convergence, Real Anal. Exch. 26 (2000-2001), 669-685. (2000) MR1844385
  25. Kumar, V., On I and I * -convergence of double sequences, Math. Commun. 12 (2007), 171-181. (2007) Zbl1146.40001MR2382452
  26. Lahiri, B. K., Das, P., Further results on -limit superior and limit inferior, Math. Commun. 8 (2003), 151-156. (2003) MR2026393
  27. Lahiri, B. K., Das, P., I and I * -convergence in topological spaces, Math. Bohem. 130 (2005), 153-160. (2005) Zbl1111.40001MR2148648
  28. Letavaj, P., -convergence to a set, Acta Math. Univ. Comen., New Ser. 80 (2011), 103-106. (2011) MR2784847
  29. Nabiev, A., Pehlivan, S., Gürdal, M., 10.11650/twjm/1500404709, Taiwanese J. Math. 11 (2007), 569-576. (2007) MR2334006DOI10.11650/twjm/1500404709
  30. Nuray, F., Ruckle, W. H., 10.1006/jmaa.2000.6778, J. Math. Anal. Appl. 245 (2000), 513-527. (2000) Zbl0955.40001MR1758553DOI10.1006/jmaa.2000.6778
  31. Pehlivan, S., Şençimen, C., Yaman, Z. H., 10.1080/09720502.2010.10700688, J. Interdiscip. Math. 13 (2010), 153-162. (2010) Zbl1218.54003MR2731626DOI10.1080/09720502.2010.10700688
  32. Šalát, T., Tripathy, B. C., Ziman, M., On some properties of -convergence, Tatra Mt. Math. Publ. 28 (2004), 274-286. (2004) MR2087000
  33. Šalát, T., Tripathy, B. C., Ziman, M., On -convergence field, Ital. J. Pure Appl. Math. 17 (2005), 45-54. (2005) MR2203460
  34. Swartz, C., 10.1007/BF01195219, Arch. Math. 53 (1989), 390-393. (1989) Zbl0661.28003MR1016003DOI10.1007/BF01195219
  35. Tripathy, B., Tripathy, B. C., On I -convergent double sequences, Soochow J. Math. 31 (2005), 549-560. (2005) Zbl1083.40002MR2189799

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.