Berezin-Weyl quantization for Cartan motion groups
Commentationes Mathematicae Universitatis Carolinae (2011)
- Volume: 52, Issue: 1, page 127-137
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Berezin-Weyl quantization for Cartan motion groups." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 127-137. <http://eudml.org/doc/246305>.
@article{Cahen2011,
abstract = {We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization; semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization},
language = {eng},
number = {1},
pages = {127-137},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Berezin-Weyl quantization for Cartan motion groups},
url = {http://eudml.org/doc/246305},
volume = {52},
year = {2011},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Berezin-Weyl quantization for Cartan motion groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 127
EP - 137
AB - We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
LA - eng
KW - semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization; semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization
UR - http://eudml.org/doc/246305
ER -
References
top- Ali S.T., Engliš M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR2151954DOI10.1142/S0129055X05002376
- Berezin F.A., Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175. Zbl0976.83531MR0395610
- Cahen B., 10.1007/BF00403252, Lett. Math. Phys. 36 (1996), 65–75. Zbl0843.22020MR1371298DOI10.1007/BF00403252
- Cahen B., 10.1016/S0764-4442(97)80063-8, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806. Zbl0883.22016MR1483721DOI10.1016/S0764-4442(97)80063-8
- Cahen B., 10.1007/BF02807403, J. Anal. Math. 97 (2005), 83–102. MR2274974DOI10.1007/BF02807403
- Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177–190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
- Cahen B., Weyl quantization for principal series, Beiträge Algebra Geom. 48 (2007), no. 1, 175–190. Zbl1134.22010MR2326408
- Cahen B., Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math. 53 (2009), no. 1, 265–288. Zbl1185.22008MR2584946
- Cahen B., Contraction of discrete series via Berezin quantization, J. Lie Theory 19 (2009), 291–310. Zbl1185.22007MR2572131
- Cahen B., Weyl quantization for the semi-direct product of a compact Lie group and a vector space, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347. MR2573408
- B. Cahen, A contraction of the principal series by Berezin-Weyl quantization, Univ. Metz, preprint, 2010. MR2682458
- Cahen M., Gutt S., Rawnsley J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. MR1094730DOI10.1016/0393-0440(90)90019-Y
- Cotton P., Dooley A.H., Contraction of an adapted functional calculus, J. Lie Theory 7 (1997), 147–164. Zbl0882.22015MR1473162
- Dooley A.H., Rice J.W., 10.1090/S0002-9947-1985-0779059-4, Trans. Amer. Math. Soc. 289 (1985), 185–202. Zbl0546.22017MR0779059DOI10.1090/S0002-9947-1985-0779059-4
- Folland B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989. Zbl0682.43001MR0983366
- Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl0993.53002MR1834454
- Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985.
- Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
- Knapp A.W., Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. Zbl0993.22001MR0855239
- B. Kostant, 10.1007/BFb0079068, in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207. Zbl0249.53016MR0294568DOI10.1007/BFb0079068
- Mackey G., On the analogy between semisimple Lie groups and certain related semi-direct product groups, in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975. Zbl0324.22006MR0409726
- Rawnsley J.H., 10.1017/S0305004100051793, Math. Proc. Camb. Phil. Soc. 78 (1975), 345–350. Zbl0313.22014MR0387499DOI10.1017/S0305004100051793
- Simms D.J., 10.1007/BFb0069914, Lecture Notes in Mathematics, 52, Springer, Berlin, Heidelberg, New-York, 1968. Zbl0161.24002MR0232579DOI10.1007/BFb0069914
- Taylor M.E., Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986. MR0852988
- Voros A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), 104–132. MR0496088DOI10.1016/0022-1236(78)90049-6
- Wallach N.R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973. Zbl0265.22022MR0498996
- Wildberger N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl0842.22015MR1250994DOI10.1017/S1446788700034741
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.