Berezin-Weyl quantization for Cartan motion groups

Benjamin Cahen

Commentationes Mathematicae Universitatis Carolinae (2011)

  • Volume: 52, Issue: 1, page 127-137
  • ISSN: 0010-2628

Abstract

top
We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].

How to cite

top

Cahen, Benjamin. "Berezin-Weyl quantization for Cartan motion groups." Commentationes Mathematicae Universitatis Carolinae 52.1 (2011): 127-137. <http://eudml.org/doc/246305>.

@article{Cahen2011,
abstract = {We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization; semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization},
language = {eng},
number = {1},
pages = {127-137},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Berezin-Weyl quantization for Cartan motion groups},
url = {http://eudml.org/doc/246305},
volume = {52},
year = {2011},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Berezin-Weyl quantization for Cartan motion groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2011
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 52
IS - 1
SP - 127
EP - 137
AB - We construct adapted Weyl correspondences for the unitary irreducible representations of the Cartan motion group of a noncompact semisimple Lie group by using the method introduced in [B. Cahen, Weyl quantization for semidirect products, Differential Geom. Appl. 25 (2007), 177--190].
LA - eng
KW - semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization; semidirect product; Cartan motion group; unitary representation; semisimple Lie group; symplectomorphism; coadjoint orbit; Weyl quantization; Berezin quantization
UR - http://eudml.org/doc/246305
ER -

References

top
  1. Ali S.T., Engliš M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR2151954DOI10.1142/S0129055X05002376
  2. Berezin F.A., Quantization, Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175. Zbl0976.83531MR0395610
  3. Cahen B., 10.1007/BF00403252, Lett. Math. Phys. 36 (1996), 65–75. Zbl0843.22020MR1371298DOI10.1007/BF00403252
  4. Cahen B., 10.1016/S0764-4442(97)80063-8, C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803–806. Zbl0883.22016MR1483721DOI10.1016/S0764-4442(97)80063-8
  5. Cahen B., 10.1007/BF02807403, J. Anal. Math. 97 (2005), 83–102. MR2274974DOI10.1007/BF02807403
  6. Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177–190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
  7. Cahen B., Weyl quantization for principal series, Beiträge Algebra Geom. 48 (2007), no. 1, 175–190. Zbl1134.22010MR2326408
  8. Cahen B., Contraction of compact semisimple Lie groups via Berezin quantization, Illinois J. Math. 53 (2009), no. 1, 265–288. Zbl1185.22008MR2584946
  9. Cahen B., Contraction of discrete series via Berezin quantization, J. Lie Theory 19 (2009), 291–310. Zbl1185.22007MR2572131
  10. Cahen B., Weyl quantization for the semi-direct product of a compact Lie group and a vector space, Comment. Math. Univ. Carolin. 50 (2009), no. 3, 325–347. MR2573408
  11. B. Cahen, A contraction of the principal series by Berezin-Weyl quantization, Univ. Metz, preprint, 2010. MR2682458
  12. Cahen M., Gutt S., Rawnsley J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. MR1094730DOI10.1016/0393-0440(90)90019-Y
  13. Cotton P., Dooley A.H., Contraction of an adapted functional calculus, J. Lie Theory 7 (1997), 147–164. Zbl0882.22015MR1473162
  14. Dooley A.H., Rice J.W., 10.1090/S0002-9947-1985-0779059-4, Trans. Amer. Math. Soc. 289 (1985), 185–202. Zbl0546.22017MR0779059DOI10.1090/S0002-9947-1985-0779059-4
  15. Folland B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989. Zbl0682.43001MR0983366
  16. Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl0993.53002MR1834454
  17. Hörmander L., The Analysis of Linear Partial Differential Operators, Vol. 3, Section 18.5, Springer, Berlin, Heidelberg, New-York, 1985. 
  18. Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
  19. Knapp A.W., Representation Theory of Semisimple Groups. An Overview Based on Examples, Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. Zbl0993.22001MR0855239
  20. B. Kostant, 10.1007/BFb0079068, in Modern Analysis and Applications, Lecture Notes in Mathematics, 170, Springer, Berlin, Heidelberg, New-York, 1970, pp. 87–207. Zbl0249.53016MR0294568DOI10.1007/BFb0079068
  21. Mackey G., On the analogy between semisimple Lie groups and certain related semi-direct product groups, in Lie Groups and their Representations, I.M. Gelfand Ed., Hilger, London, 1975. Zbl0324.22006MR0409726
  22. Rawnsley J.H., 10.1017/S0305004100051793, Math. Proc. Camb. Phil. Soc. 78 (1975), 345–350. Zbl0313.22014MR0387499DOI10.1017/S0305004100051793
  23. Simms D.J., 10.1007/BFb0069914, Lecture Notes in Mathematics, 52, Springer, Berlin, Heidelberg, New-York, 1968. Zbl0161.24002MR0232579DOI10.1007/BFb0069914
  24. Taylor M.E., Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, Rhode Island, 1986. MR0852988
  25. Voros A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), 104–132. MR0496088DOI10.1016/0022-1236(78)90049-6
  26. Wallach N.R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, 19, Marcel Dekker, New-York, 1973. Zbl0265.22022MR0498996
  27. Wildberger N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. Zbl0842.22015MR1250994DOI10.1017/S1446788700034741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.