Weyl quantization for the semidirect product of a compact Lie group and a vector space
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 3, page 325-347
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Weyl quantization for the semidirect product of a compact Lie group and a vector space." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 325-347. <http://eudml.org/doc/33318>.
@article{Cahen2009,
abstract = {Let $G$ be the semidirect product $V\rtimes K$ where $K$ is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\mathcal \{O\}$ be a coadjoint orbit of $G$ associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation $\pi $ of $G$. We consider the case when the corresponding little group $H$ is the centralizer of a torus of $K$. By dequantizing a suitable realization of $\pi $ on a Hilbert space of functions on $\{\mathbb \{C\}\}^n$ where $n=\dim (K/H)$, we construct a symplectomorphism between a dense open subset of $\{\mathcal \{O\}\}$ and the symplectic product $\{\mathbb \{C\}\}^\{2n\}\times \{\mathcal \{O\}\}^\{\prime \}$ where $\{\mathcal \{O\}\}^\{\prime \}$ is a coadjoint orbit of $H$. This allows us to obtain a Weyl correspondence on $\{\mathcal \{O\}\}$ which is adapted to the representation $\pi $ in the sense of [B. Cahen, Quantification d’une orbite massive d’un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803–806].},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Weyl quantization; Berezin quantization; semidirect product; coadjoint orbits; unitary representations; Weyl quantization; Berezin quantization; semidirect product; coadjoint orbit; unitary representation},
language = {eng},
number = {3},
pages = {325-347},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weyl quantization for the semidirect product of a compact Lie group and a vector space},
url = {http://eudml.org/doc/33318},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Weyl quantization for the semidirect product of a compact Lie group and a vector space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 325
EP - 347
AB - Let $G$ be the semidirect product $V\rtimes K$ where $K$ is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\mathcal {O}$ be a coadjoint orbit of $G$ associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation $\pi $ of $G$. We consider the case when the corresponding little group $H$ is the centralizer of a torus of $K$. By dequantizing a suitable realization of $\pi $ on a Hilbert space of functions on ${\mathbb {C}}^n$ where $n=\dim (K/H)$, we construct a symplectomorphism between a dense open subset of ${\mathcal {O}}$ and the symplectic product ${\mathbb {C}}^{2n}\times {\mathcal {O}}^{\prime }$ where ${\mathcal {O}}^{\prime }$ is a coadjoint orbit of $H$. This allows us to obtain a Weyl correspondence on ${\mathcal {O}}$ which is adapted to the representation $\pi $ in the sense of [B. Cahen, Quantification d’une orbite massive d’un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803–806].
LA - eng
KW - Weyl quantization; Berezin quantization; semidirect product; coadjoint orbits; unitary representations; Weyl quantization; Berezin quantization; semidirect product; coadjoint orbit; unitary representation
UR - http://eudml.org/doc/33318
ER -
References
top- Ali S.T., Englis M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391--490. Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
- Arnal D., Cortet J.-C., 10.1007/BF00398548, Lett. Math. Phys. 9 (1985), 25--34. Zbl0616.46041MR0774736DOI10.1007/BF00398548
- Baguis P., 10.1016/S0393-0440(97)00028-4, J. Geom. Phys. 25 (1998), 245--270. MR1619845DOI10.1016/S0393-0440(97)00028-4
- Berezin F.A., 10.1070/IM1974v008n05ABEH002140, Math. USSR Izv. 8, 5 (1974), 1109--1165. Zbl0976.83531DOI10.1070/IM1974v008n05ABEH002140
- Cahen B., 10.1007/BF00403252, Lett. Math. Phys. 36 (1996), 65--75. Zbl0843.22020MR1371298DOI10.1007/BF00403252
- Cahen B., 10.1016/S0764-4442(97)80063-8, C.R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803--806. Zbl0883.22016MR1483721DOI10.1016/S0764-4442(97)80063-8
- Cahen B., Quantification d'orbites coadjointes et théorie des contractions, J. Lie Theory 11 (2001), 257--272. Zbl0973.22009MR1851792
- Cahen B., 10.1007/BF02807403, J. Anal. Math. 97 (2005), 83--102. MR2274974DOI10.1007/BF02807403
- Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177--190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
- Cahen B., Weyl quantization for principal series, Beiträge Algebra Geom. 48 (2007), no. 1, 175--190. Zbl1134.22010MR2326408
- Cahen B., Berezin quantization for discrete series, preprint Univ. Metz (2008), to appear in Beiträge Algebra Geom. MR2682458
- Cahen B., Berezin quantization on generalized flag manifolds, preprint Univ. Metz (2008), to appear in Math. Scand. MR2549798
- Cahen M., Gutt S., Rawnsley J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45--62. MR1094730DOI10.1016/0393-0440(90)90019-Y
- Cotton P., Dooley A.H., Contraction of an adapted functional calculus, J. Lie Theory 7 (1997), 147--164. Zbl0882.22015MR1473162
- Folland B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989. Zbl0682.43001MR0983366
- Gotay M., Obstructions to quantization, in Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer, NewYork, 2000, pp. 271--316. Zbl1041.53507MR1766362
- Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl0993.53002MR1834454
- Hörmander L., The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin-Heidelberg-NewYork, 1985. MR0781536
- Kirillov A.A., 10.1007/978-3-642-66243-0, Grundlehren der Mathematischen Wissenschaften, 220, Springer, Berlin-Heidelberg-New York, 1976. Zbl0342.22001MR0412321DOI10.1007/978-3-642-66243-0
- Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
- Kostant B., 10.1007/BFb0079068, in Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer, Berlin-Heidelberg-New York, 1970, pp. 87--207. Zbl0249.53016MR0294568DOI10.1007/BFb0079068
- Neeb K.-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28, Walter de Gruyter, Berlin, New York, 2000. Zbl0936.22001MR1740617
- Rawnsley J.H., 10.1017/S0305004100051793, Math. Proc. Cambridge Philos. Soc. 78 (1975), 345--350. Zbl0313.22014MR0387499DOI10.1017/S0305004100051793
- Simms D.J., 10.1007/BFb0069914, Lecture Notes in Mathematics, 52, Springer, Berlin-Heidelberg-New York, 1968. Zbl0161.24002MR0232579DOI10.1007/BFb0069914
- Taylor M.E., Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, Vol. 22, American Mathematical Society, Providence, Rhode Island, 1986. MR0852988
- Voros A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), 104--132. MR0496088DOI10.1016/0022-1236(78)90049-6
- Wallach N.R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, Vol. 19, Marcel Dekker, New York, 1973. Zbl0265.22022MR0498996
- Wildberger N.J., 10.1007/BF01388854, Invent. Math. 89 (1989), 281--292. MR1016265DOI10.1007/BF01388854
- Wildberger N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. A 56 (1994), 64--116. Zbl0842.22015MR1250994DOI10.1017/S1446788700034741
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.