Weyl quantization for the semidirect product of a compact Lie group and a vector space

Benjamin Cahen

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 3, page 325-347
  • ISSN: 0010-2628

Abstract

top
Let G be the semidirect product V K where K is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space V . Let 𝒪 be a coadjoint orbit of G associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation π of G . We consider the case when the corresponding little group H is the centralizer of a torus of K . By dequantizing a suitable realization of π on a Hilbert space of functions on n where n = dim ( K / H ) , we construct a symplectomorphism between a dense open subset of 𝒪 and the symplectic product 2 n × 𝒪 ' where 𝒪 ' is a coadjoint orbit of H . This allows us to obtain a Weyl correspondence on 𝒪 which is adapted to the representation π in the sense of [B. Cahen, Quantification d’une orbite massive d’un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803–806].

How to cite

top

Cahen, Benjamin. "Weyl quantization for the semidirect product of a compact Lie group and a vector space." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 325-347. <http://eudml.org/doc/33318>.

@article{Cahen2009,
abstract = {Let $G$ be the semidirect product $V\rtimes K$ where $K$ is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\mathcal \{O\}$ be a coadjoint orbit of $G$ associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation $\pi $ of $G$. We consider the case when the corresponding little group $H$ is the centralizer of a torus of $K$. By dequantizing a suitable realization of $\pi $ on a Hilbert space of functions on $\{\mathbb \{C\}\}^n$ where $n=\dim (K/H)$, we construct a symplectomorphism between a dense open subset of $\{\mathcal \{O\}\}$ and the symplectic product $\{\mathbb \{C\}\}^\{2n\}\times \{\mathcal \{O\}\}^\{\prime \}$ where $\{\mathcal \{O\}\}^\{\prime \}$ is a coadjoint orbit of $H$. This allows us to obtain a Weyl correspondence on $\{\mathcal \{O\}\}$ which is adapted to the representation $\pi $ in the sense of [B. Cahen, Quantification d’une orbite massive d’un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803–806].},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Weyl quantization; Berezin quantization; semidirect product; coadjoint orbits; unitary representations; Weyl quantization; Berezin quantization; semidirect product; coadjoint orbit; unitary representation},
language = {eng},
number = {3},
pages = {325-347},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Weyl quantization for the semidirect product of a compact Lie group and a vector space},
url = {http://eudml.org/doc/33318},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Weyl quantization for the semidirect product of a compact Lie group and a vector space
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 325
EP - 347
AB - Let $G$ be the semidirect product $V\rtimes K$ where $K$ is a semisimple compact connected Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\mathcal {O}$ be a coadjoint orbit of $G$ associated by the Kirillov-Kostant method of orbits with a unitary irreducible representation $\pi $ of $G$. We consider the case when the corresponding little group $H$ is the centralizer of a torus of $K$. By dequantizing a suitable realization of $\pi $ on a Hilbert space of functions on ${\mathbb {C}}^n$ where $n=\dim (K/H)$, we construct a symplectomorphism between a dense open subset of ${\mathcal {O}}$ and the symplectic product ${\mathbb {C}}^{2n}\times {\mathcal {O}}^{\prime }$ where ${\mathcal {O}}^{\prime }$ is a coadjoint orbit of $H$. This allows us to obtain a Weyl correspondence on ${\mathcal {O}}$ which is adapted to the representation $\pi $ in the sense of [B. Cahen, Quantification d’une orbite massive d’un groupe de Poincaré généralisé, C.R. Acad. Sci. Paris t. 325, série I (1997), 803–806].
LA - eng
KW - Weyl quantization; Berezin quantization; semidirect product; coadjoint orbits; unitary representations; Weyl quantization; Berezin quantization; semidirect product; coadjoint orbit; unitary representation
UR - http://eudml.org/doc/33318
ER -

References

top
  1. Ali S.T., Englis M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391--490. Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
  2. Arnal D., Cortet J.-C., 10.1007/BF00398548, Lett. Math. Phys. 9 (1985), 25--34. Zbl0616.46041MR0774736DOI10.1007/BF00398548
  3. Baguis P., 10.1016/S0393-0440(97)00028-4, J. Geom. Phys. 25 (1998), 245--270. MR1619845DOI10.1016/S0393-0440(97)00028-4
  4. Berezin F.A., 10.1070/IM1974v008n05ABEH002140, Math. USSR Izv. 8, 5 (1974), 1109--1165. Zbl0976.83531DOI10.1070/IM1974v008n05ABEH002140
  5. Cahen B., 10.1007/BF00403252, Lett. Math. Phys. 36 (1996), 65--75. Zbl0843.22020MR1371298DOI10.1007/BF00403252
  6. Cahen B., 10.1016/S0764-4442(97)80063-8, C.R. Acad. Sci. Paris Sér. I Math. 325 (1997), 803--806. Zbl0883.22016MR1483721DOI10.1016/S0764-4442(97)80063-8
  7. Cahen B., Quantification d'orbites coadjointes et théorie des contractions, J. Lie Theory 11 (2001), 257--272. Zbl0973.22009MR1851792
  8. Cahen B., 10.1007/BF02807403, J. Anal. Math. 97 (2005), 83--102. MR2274974DOI10.1007/BF02807403
  9. Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177--190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
  10. Cahen B., Weyl quantization for principal series, Beiträge Algebra Geom. 48 (2007), no. 1, 175--190. Zbl1134.22010MR2326408
  11. Cahen B., Berezin quantization for discrete series, preprint Univ. Metz (2008), to appear in Beiträge Algebra Geom. MR2682458
  12. Cahen B., Berezin quantization on generalized flag manifolds, preprint Univ. Metz (2008), to appear in Math. Scand. MR2549798
  13. Cahen M., Gutt S., Rawnsley J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45--62. MR1094730DOI10.1016/0393-0440(90)90019-Y
  14. Cotton P., Dooley A.H., Contraction of an adapted functional calculus, J. Lie Theory 7 (1997), 147--164. Zbl0882.22015MR1473162
  15. Folland B., Harmonic Analysis in Phase Space, Princeton Univ. Press, Princeton, 1989. Zbl0682.43001MR0983366
  16. Gotay M., Obstructions to quantization, in Mechanics: From Theory to Computation (Essays in Honor of Juan-Carlos Simo), J. Nonlinear Science Editors, Springer, NewYork, 2000, pp. 271--316. Zbl1041.53507MR1766362
  17. Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl0993.53002MR1834454
  18. Hörmander L., The Analysis of Linear Partial Differential Operators III. Pseudodifferential Operators, Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin-Heidelberg-NewYork, 1985. MR0781536
  19. Kirillov A.A., 10.1007/978-3-642-66243-0, Grundlehren der Mathematischen Wissenschaften, 220, Springer, Berlin-Heidelberg-New York, 1976. Zbl0342.22001MR0412321DOI10.1007/978-3-642-66243-0
  20. Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
  21. Kostant B., 10.1007/BFb0079068, in Modern Analysis and Applications, Lecture Notes in Mathematics 170, Springer, Berlin-Heidelberg-New York, 1970, pp. 87--207. Zbl0249.53016MR0294568DOI10.1007/BFb0079068
  22. Neeb K.-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, Vol. 28, Walter de Gruyter, Berlin, New York, 2000. Zbl0936.22001MR1740617
  23. Rawnsley J.H., 10.1017/S0305004100051793, Math. Proc. Cambridge Philos. Soc. 78 (1975), 345--350. Zbl0313.22014MR0387499DOI10.1017/S0305004100051793
  24. Simms D.J., 10.1007/BFb0069914, Lecture Notes in Mathematics, 52, Springer, Berlin-Heidelberg-New York, 1968. Zbl0161.24002MR0232579DOI10.1007/BFb0069914
  25. Taylor M.E., Noncommutative Harmonis Analysis, Mathematical Surveys and Monographs, Vol. 22, American Mathematical Society, Providence, Rhode Island, 1986. MR0852988
  26. Voros A., 10.1016/0022-1236(78)90049-6, J. Funct. Anal. 29 (1978), 104--132. MR0496088DOI10.1016/0022-1236(78)90049-6
  27. Wallach N.R., Harmonic Analysis on Homogeneous Spaces, Pure and Applied Mathematics, Vol. 19, Marcel Dekker, New York, 1973. Zbl0265.22022MR0498996
  28. Wildberger N.J., 10.1007/BF01388854, Invent. Math. 89 (1989), 281--292. MR1016265DOI10.1007/BF01388854
  29. Wildberger N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. A 56 (1994), 64--116. Zbl0842.22015MR1250994DOI10.1017/S1446788700034741

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.