An identity with generalized derivations on Lie ideals, right ideals and Banach algebras
Vincenzo de Filippis; Giovanni Scudo; Mohammad S. Tammam El-Sayiad
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 2, page 453-468
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topde Filippis, Vincenzo, Scudo, Giovanni, and Tammam El-Sayiad, Mohammad S.. "An identity with generalized derivations on Lie ideals, right ideals and Banach algebras." Czechoslovak Mathematical Journal 62.2 (2012): 453-468. <http://eudml.org/doc/246544>.
@article{deFilippis2012,
abstract = {Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.},
author = {de Filippis, Vincenzo, Scudo, Giovanni, Tammam El-Sayiad, Mohammad S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime rings; differential identities; generalized derivations; Banach algebra; prime rings; differential identities; generalized derivations; Banach algebras; Lie ideals; additive maps},
language = {eng},
number = {2},
pages = {453-468},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An identity with generalized derivations on Lie ideals, right ideals and Banach algebras},
url = {http://eudml.org/doc/246544},
volume = {62},
year = {2012},
}
TY - JOUR
AU - de Filippis, Vincenzo
AU - Scudo, Giovanni
AU - Tammam El-Sayiad, Mohammad S.
TI - An identity with generalized derivations on Lie ideals, right ideals and Banach algebras
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 453
EP - 468
AB - Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.
LA - eng
KW - prime rings; differential identities; generalized derivations; Banach algebra; prime rings; differential identities; generalized derivations; Banach algebras; Lie ideals; additive maps
UR - http://eudml.org/doc/246544
ER -
References
top- Beidar, K. I., Rings with generalized identities. III, Mosc. Univ. Math. Bull. 33 (1978), 53-58. (1978) Zbl0407.16002MR0510966
- Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996). (1996) MR1368853
- Brešar, M., Mathieu, M., 10.1006/jfan.1995.1116, J. Funct. Anal. 133 (1995), 21-29. (1995) Zbl0897.46045MR1351640DOI10.1006/jfan.1995.1116
- Chuang, C. L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
- Filippis, V. De, On the annihilator of commutators with derivation in prime rings, Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352. (2000) Zbl0962.16017MR1765404
- Filippis, V. De, A result on vanishing derivations for commutators on right ideals, Math. Pannonica 16 (2005), 3-18. (2005) Zbl1081.16036MR2134234
- Filippis, V. De, 10.1007/BF03191235, Collect. Math. 61 (2010), 303-322. (2010) MR2732374DOI10.1007/BF03191235
- Vincenzo, O. M. Di, On the n-th centralizer of a Lie ideal, Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85. (1989) Zbl0692.16022MR0990089
- Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) MR0382379DOI10.2140/pjm.1975.60.49
- Faith, C., Utumi, Y., 10.1007/BF01895723, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. (1963) Zbl0147.28602MR0155858DOI10.1007/BF01895723
- Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969). (1969) Zbl0232.16001MR0271135
- Jacobson, N., PI-Algebras. An Introduction, Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975). (1975) Zbl0326.16013MR0369421
- Jacobson, N., Structure of Rings, Amererican Mathematical Society. Providence R.I. (1956). (1956) Zbl0073.02002MR0081264
- Johnson, B. E., Sinclair, A. M., 10.2307/2373290, Am. J. Math. 90 (1968), 1067-1073. (1968) Zbl0179.18103MR0239419DOI10.2307/2373290
- Kharchenko, V. K., 10.1007/BF01670115, Algebra Logic 17 (1979), 155-168. (1979) MR0541758DOI10.1007/BF01670115
- Kim, B., 10.1007/s101149900020, Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. (2000) Zbl0973.16020MR1760520DOI10.1007/s101149900020
- Kim, B., 10.4134/CKMS.2002.17.4.607, Commun. Korean Math. Soc. 17 (2002), 607-618. (2002) Zbl1101.46317MR1971004DOI10.4134/CKMS.2002.17.4.607
- Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
- Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
- Lee, T.-K., Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. (1992) Zbl0769.16017MR1166215
- III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
- Mathieu, M., Murphy, G. J., 10.1007/BF01246745, Arch. Math. 57 (1991), 469-474. (1991) Zbl0714.46038MR1129522DOI10.1007/BF01246745
- Mathieu, M., Runde, V., 10.1112/blms/24.5.485, Bull. Lond. Math. Soc. 24 (1992), 485-487. (1992) Zbl0733.46023MR1173946DOI10.1112/blms/24.5.485
- Park, K.-H., 10.4134/BKMS.2005.42.4.671, Bull. Korean Math. Soc. 42 (2005), 671-678. (2005) Zbl1105.16031MR2181155DOI10.4134/BKMS.2005.42.4.671
- Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1958), 1093-1100. (1958) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
- Sinclair, A. M., 10.1090/S0002-9939-1969-0233207-X, Proc. Am. Math. Soc. 20 (1969), 166-170. (1969) Zbl0164.44603MR0233207DOI10.1090/S0002-9939-1969-0233207-X
- Singer, I. M., Wermer, J., 10.1007/BF01362370, Math. Ann. 129 (1955), 260-264. (1955) Zbl0067.35101MR0070061DOI10.1007/BF01362370
- Thomas, M. P., The image of a derivation is contained in the radical, Ann. Math. (2) 128/3 (1988), 435-460. (1988) Zbl0681.47016MR0970607
- Wong, T. L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.