An identity with generalized derivations on Lie ideals, right ideals and Banach algebras

Vincenzo de Filippis; Giovanni Scudo; Mohammad S. Tammam El-Sayiad

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 2, page 453-468
  • ISSN: 0011-4642

Abstract

top
Let R be a prime ring of characteristic different from 2 , U the Utumi quotient ring of R , C = Z ( U ) the extended centroid of R , L a non-central Lie ideal of R , F a non-zero generalized derivation of R . Suppose that [ F ( u ) , u ] F ( u ) = 0 for all u L , then one of the following holds: (1) there exists α C such that F ( x ) = α x for all x R ; (2) R satisfies the standard identity s 4 and there exist a U and α C such that F ( x ) = a x + x a + α x for all x R . We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.

How to cite

top

de Filippis, Vincenzo, Scudo, Giovanni, and Tammam El-Sayiad, Mohammad S.. "An identity with generalized derivations on Lie ideals, right ideals and Banach algebras." Czechoslovak Mathematical Journal 62.2 (2012): 453-468. <http://eudml.org/doc/246544>.

@article{deFilippis2012,
abstract = {Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.},
author = {de Filippis, Vincenzo, Scudo, Giovanni, Tammam El-Sayiad, Mohammad S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime rings; differential identities; generalized derivations; Banach algebra; prime rings; differential identities; generalized derivations; Banach algebras; Lie ideals; additive maps},
language = {eng},
number = {2},
pages = {453-468},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An identity with generalized derivations on Lie ideals, right ideals and Banach algebras},
url = {http://eudml.org/doc/246544},
volume = {62},
year = {2012},
}

TY - JOUR
AU - de Filippis, Vincenzo
AU - Scudo, Giovanni
AU - Tammam El-Sayiad, Mohammad S.
TI - An identity with generalized derivations on Lie ideals, right ideals and Banach algebras
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 2
SP - 453
EP - 468
AB - Let $R$ be a prime ring of characteristic different from $2$, $U$ the Utumi quotient ring of $R$, $C=Z(U)$ the extended centroid of $R$, $L$ a non-central Lie ideal of $R$, $F$ a non-zero generalized derivation of $R$. Suppose that $[F(u),u]F(u)=0$ for all $u\in L$, then one of the following holds: (1) there exists $\alpha \in C$ such that $F(x)=\alpha x$ for all $x\in R$; (2) $R$ satisfies the standard identity $s_4$ and there exist $a\in U$ and $\alpha \in C$ such that $F(x)=ax+xa+\alpha x$ for all $x\in R$. We also extend the result to the one-sided case. Finally, as an application we obtain some range inclusion results of continuous or spectrally bounded generalized derivations on Banach algebras.
LA - eng
KW - prime rings; differential identities; generalized derivations; Banach algebra; prime rings; differential identities; generalized derivations; Banach algebras; Lie ideals; additive maps
UR - http://eudml.org/doc/246544
ER -

References

top
  1. Beidar, K. I., Rings with generalized identities. III, Mosc. Univ. Math. Bull. 33 (1978), 53-58. (1978) Zbl0407.16002MR0510966
  2. Beidar, K. I., III, W. S. Martindale, Mikhalev, A. V., Rings with Generalized Identities, Pure and Applied Mathematics, Marcel Dekker. 196. New York (1996). (1996) MR1368853
  3. Brešar, M., Mathieu, M., 10.1006/jfan.1995.1116, J. Funct. Anal. 133 (1995), 21-29. (1995) Zbl0897.46045MR1351640DOI10.1006/jfan.1995.1116
  4. Chuang, C. L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  5. Filippis, V. De, On the annihilator of commutators with derivation in prime rings, Rend. Circ. Mat. Palermo, II. Ser. 49 (2000), 343-352. (2000) Zbl0962.16017MR1765404
  6. Filippis, V. De, A result on vanishing derivations for commutators on right ideals, Math. Pannonica 16 (2005), 3-18. (2005) Zbl1081.16036MR2134234
  7. Filippis, V. De, 10.1007/BF03191235, Collect. Math. 61 (2010), 303-322. (2010) MR2732374DOI10.1007/BF03191235
  8. Vincenzo, O. M. Di, On the n-th centralizer of a Lie ideal, Boll. Unione Mat. Ital., VII. Ser., A 3 (1989), 77-85. (1989) Zbl0692.16022MR0990089
  9. Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) MR0382379DOI10.2140/pjm.1975.60.49
  10. Faith, C., Utumi, Y., 10.1007/BF01895723, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. (1963) Zbl0147.28602MR0155858DOI10.1007/BF01895723
  11. Herstein, I. N., Topics in Ring Theory, Chicago Lectures in Mathematics. Chicago-London: The University of Chicago Press. XI (1969). (1969) Zbl0232.16001MR0271135
  12. Jacobson, N., PI-Algebras. An Introduction, Lecture Notes in Mathematics. 441. Springer-Verlag, New York (1975). (1975) Zbl0326.16013MR0369421
  13. Jacobson, N., Structure of Rings, Amererican Mathematical Society. Providence R.I. (1956). (1956) Zbl0073.02002MR0081264
  14. Johnson, B. E., Sinclair, A. M., 10.2307/2373290, Am. J. Math. 90 (1968), 1067-1073. (1968) Zbl0179.18103MR0239419DOI10.2307/2373290
  15. Kharchenko, V. K., 10.1007/BF01670115, Algebra Logic 17 (1979), 155-168. (1979) MR0541758DOI10.1007/BF01670115
  16. Kim, B., 10.1007/s101149900020, Acta Math. Sin., Engl. Ser. 16 (2000), 21-28. (2000) Zbl0973.16020MR1760520DOI10.1007/s101149900020
  17. Kim, B., 10.4134/CKMS.2002.17.4.607, Commun. Korean Math. Soc. 17 (2002), 607-618. (2002) Zbl1101.46317MR1971004DOI10.4134/CKMS.2002.17.4.607
  18. Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
  19. Lee, T.-K., 10.1080/00927879908826682, Commun. Algebra 27 (1999), 4057-4073. (1999) Zbl0946.16026MR1700189DOI10.1080/00927879908826682
  20. Lee, T.-K., Semiprime rings with differential identities, Bull. Inst. Math., Acad. Sin. 20 (1992), 27-38. (1992) Zbl0769.16017MR1166215
  21. III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
  22. Mathieu, M., Murphy, G. J., 10.1007/BF01246745, Arch. Math. 57 (1991), 469-474. (1991) Zbl0714.46038MR1129522DOI10.1007/BF01246745
  23. Mathieu, M., Runde, V., 10.1112/blms/24.5.485, Bull. Lond. Math. Soc. 24 (1992), 485-487. (1992) Zbl0733.46023MR1173946DOI10.1112/blms/24.5.485
  24. Park, K.-H., 10.4134/BKMS.2005.42.4.671, Bull. Korean Math. Soc. 42 (2005), 671-678. (2005) Zbl1105.16031MR2181155DOI10.4134/BKMS.2005.42.4.671
  25. Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1958), 1093-1100. (1958) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
  26. Sinclair, A. M., 10.1090/S0002-9939-1969-0233207-X, Proc. Am. Math. Soc. 20 (1969), 166-170. (1969) Zbl0164.44603MR0233207DOI10.1090/S0002-9939-1969-0233207-X
  27. Singer, I. M., Wermer, J., 10.1007/BF01362370, Math. Ann. 129 (1955), 260-264. (1955) Zbl0067.35101MR0070061DOI10.1007/BF01362370
  28. Thomas, M. P., The image of a derivation is contained in the radical, Ann. Math. (2) 128/3 (1988), 435-460. (1988) Zbl0681.47016MR0970607
  29. Wong, T. L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.