b -generalized skew derivations acting on Lie ideals in prime rings

Basudeb Dhara; Kalyan Singh

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 575-597
  • ISSN: 0011-4642

How to cite

top

Dhara, Basudeb, and Singh, Kalyan. "$b$-generalized skew derivations acting on Lie ideals in prime rings." Czechoslovak Mathematical Journal 74.2 (2024): 575-597. <http://eudml.org/doc/299600>.

@article{Dhara2024,
abstract = {},
author = {Dhara, Basudeb, Singh, Kalyan},
journal = {Czechoslovak Mathematical Journal},
keywords = {derivation; $b$-generalized derivation; $b$-generalized skew derivation; Lie ideal; prime ring},
language = {eng},
number = {2},
pages = {575-597},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$b$-generalized skew derivations acting on Lie ideals in prime rings},
url = {http://eudml.org/doc/299600},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Dhara, Basudeb
AU - Singh, Kalyan
TI - $b$-generalized skew derivations acting on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 575
EP - 597
AB -
LA - eng
KW - derivation; $b$-generalized derivation; $b$-generalized skew derivation; Lie ideal; prime ring
UR - http://eudml.org/doc/299600
ER -

References

top
  1. Albaş, E., Argaç, N., Filippis, V. De, 10.2298/FIL1804285A, Filomat 32 (2018), 1285-1301. (2018) Zbl1499.16052MR3848105DOI10.2298/FIL1804285A
  2. Bergen, J., Herstein, I. N., Kerr, J. W., 10.1016/0021-8693(81)90120-4, J. Algebra 71 (1981), 259-267. (1981) Zbl0463.16023MR0627439DOI10.1016/0021-8693(81)90120-4
  3. Chuang, C.-L., 10.1090/S0002-9939-1988-0947646-4, Proc. Am. Math. Soc. 103 (1988), 723-728. (1988) Zbl0656.16006MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  4. Chuang, C.-L., Lee, T.-K., 10.1016/j.jalgebra.2003.12.032, J. Algebra 288 (2005), 59-77. (2005) Zbl1073.16021MR2138371DOI10.1016/j.jalgebra.2003.12.032
  5. Dhara, B., Argac, N., Albas, E., 10.1080/00927872.2015.1027393, Commun. Algebra 44 (2016), 1905-1923. (2016) Zbl1344.16036MR3490654DOI10.1080/00927872.2015.1027393
  6. Filippis, V. De, 10.4153/CMB-2015-077-x, Can. Math. Bull. 59 (2016), 258-270. (2016) Zbl1357.16056MR3492637DOI10.4153/CMB-2015-077-x
  7. Filippis, V. De, Vincenzo, O. M. Di, 10.1080/00927872.2011.553859, Commun. Algebra 40 (2012), 1918-1932. (2012) Zbl1258.16043MR2945689DOI10.1080/00927872.2011.553859
  8. Filippis, V. De, Scudo, G., El-sayiad, M. S. Tammam, 10.1007/s10587-012-0039-0, Czech. Math. J. 62 (2012), 453-468. (2012) Zbl1249.16045MR2990186DOI10.1007/s10587-012-0039-0
  9. Filippis, V. De, Wei, F., 10.1080/00927872.2018.1469028, Commun. Algebra 46 (2018), 5433-5446. (2018) Zbl1412.16039MR3923771DOI10.1080/00927872.2018.1469028
  10. Erickson, T. S., III, W. S. Martindale, Osborn, J. M., 10.2140/pjm.1975.60.49, Pac. J. Math. 60 (1975), 49-63. (1975) Zbl0355.17005MR0382379DOI10.2140/pjm.1975.60.49
  11. Faith, C., Utumi, Y., 10.1007/BF01895723, Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. (1963) Zbl0147.28602MR0155858DOI10.1007/BF01895723
  12. Jacobson, N., 10.1090/coll/037, Colloquium Publications 37. AMS, Providence (1964). (1964) Zbl0073.02002MR0222106DOI10.1090/coll/037
  13. Lanski, C., 10.2140/pjm.1988.134.275, Pac. J. Math. 134 (1988), 275-297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
  14. Lanski, C., 10.1090/S0002-9939-1993-1132851-9, Proc. Am. Math. Soc. 118 (1993), 731-734. (1993) Zbl0821.16037MR1132851DOI10.1090/S0002-9939-1993-1132851-9
  15. Lee, P. H., Lee, T. K., Lie ideals of prime rings with derivations, Bull. Inst. Math., Acad. Sin. 11 (1983), 75-80. (1983) Zbl0515.16018MR0718903
  16. Liu, C.-K., 10.1080/03081087.2016.1183560, Linear Multilinear Algebra 65 (2017), 300-312. (2017) Zbl1356.16041MR3577450DOI10.1080/03081087.2016.1183560
  17. III, W. S. Martindale, 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576-584. (1969) Zbl0175.03102MR0238897DOI10.1016/0021-8693(69)90029-5
  18. Posner, E. C., 10.1090/S0002-9939-1957-0095863-0, Proc. Am. Math. Soc. 8 (1957), 1093-1100. (1957) Zbl0082.03003MR0095863DOI10.1090/S0002-9939-1957-0095863-0
  19. Vukman, J., 10.1090/S0002-9939-1992-1072093-8, Proc. Am. Math. Soc. 116 (1992), 877-884. (1992) Zbl0792.16034MR1072093DOI10.1090/S0002-9939-1992-1072093-8
  20. Wong, T.-L., Derivations with power-central values on multilinear polynomials, Algebra Colloq. 3 (1996), 369-378. (1996) Zbl0864.16031MR1422975

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.