Berezin transform for non-scalar holomorphic discrete series
Commentationes Mathematicae Universitatis Carolinae (2012)
- Volume: 53, Issue: 1, page 1-17
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Berezin transform for non-scalar holomorphic discrete series." Commentationes Mathematicae Universitatis Carolinae 53.1 (2012): 1-17. <http://eudml.org/doc/246625>.
@article{Cahen2012,
abstract = {Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi $ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho $ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi $. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi $.},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; discrete series representation; Hermitian symmetric space of the non-compact type; semi-simple non-compact Lie group; coherent states; reproducing kernel; adjoint orbit; Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; coherent state; reproducing kernel; adjoint orbit},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Berezin transform for non-scalar holomorphic discrete series},
url = {http://eudml.org/doc/246625},
volume = {53},
year = {2012},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Berezin transform for non-scalar holomorphic discrete series
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 1
SP - 1
EP - 17
AB - Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi $ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho $ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi $. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi $.
LA - eng
KW - Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; discrete series representation; Hermitian symmetric space of the non-compact type; semi-simple non-compact Lie group; coherent states; reproducing kernel; adjoint orbit; Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; coherent state; reproducing kernel; adjoint orbit
UR - http://eudml.org/doc/246625
ER -
References
top- Ali S.T., Engliš M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR2151954DOI10.1142/S0129055X05002376
- Arazy J., Upmeier H., Weyl calculus for complex and real symmetric domains, Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl1150.43302MR1984098
- Arazy J., Upmeier H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), Walter de Gruyter, Berlin, 2002, pp. 151–211. MR1943284
- Arnal D., Cahen M., Gutt S., Representations of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR1027456
- Berezin F.A., Quantization, Math. USSR Izv. 8 (1974), no. 5, 1109–1165. Zbl0976.83531MR0395610
- F. A. Berezin, 10.1070/IM1975v009n02ABEH001480, Math. USSR Izv. 9 (1975), no. 2, 341–379. DOI10.1070/IM1975v009n02ABEH001480
- Bröcker T., tom Dieck T., 10.1007/978-3-662-12918-0_4, Graduate Texts in Mathematics, 98, Springer, New York, 1985. MR0781344DOI10.1007/978-3-662-12918-0_4
- Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177–190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
- Cahen B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), 66–84. MR2549798
- Cahen B., Berezin quantization for discrete series, Beiträge Algebra Geom. 51 (2010), 301–311. MR2682458
- B. Cahen, 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo 59 (2010), 331–354. Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
- Cahen B., Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno) 47 (2011), 41–58. MR2813546
- Cahen B., Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2.
- Cahen M., Gutt S., Rawnsley J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. MR1094730DOI10.1016/0393-0440(90)90019-Y
- Cariñena J.F., Gracia-Bondìa J.M., Vàrilly J.C., 10.1088/0305-4470/23/6/015, J. Phys. A 23 (1990), 901–933. DOI10.1088/0305-4470/23/6/015
- Davidson M., Òlafsson G., Zhang G., 10.1016/S0022-1236(03)00101-0, J. Funct. Anal. 204 (2003), 157–195. MR2004748DOI10.1016/S0022-1236(03)00101-0
- De Oliveira M.P., 10.1023/A:1011915708964, Geom. Dedicata 86 (2001), 227–247. Zbl0996.32011MR1856428DOI10.1023/A:1011915708964
- Folland B., Harmonic Analysis in Phase Space, Princeton University Press, Princeton, 1989. Zbl0682.43001MR0983366
- Figueroa H., Gracia-Bondìa J.M., Vàrilly J.C., 10.1063/1.528967, J. Math. Phys. 31 (1990), 2664-2671. MR1075750DOI10.1063/1.528967
- Gracia-Bondìa J.M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, American Mathematical Society, Providence, RI, 1992, pp. 93-114. MR1187280
- Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl0993.53002MR1834454
- Herb R.A., Wolf J.A., 10.1016/0022-1236(87)90057-7, J. Funct. Anal. 73 (1987), 1–37. Zbl0625.22010MR0890655DOI10.1016/0022-1236(87)90057-7
- Knapp A.W., Representation Theory of Semi-simple Groups. An Overview Based on Examples, Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. MR0855239
- Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
- Moore C.C., 10.2307/2373170, Amer. J. Math. 86 (1964), no. 2, 358–378. MR0161943DOI10.2307/2373170
- Neeb K.-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, 28, Walter de Gruyter, Berlin, New York, 2000. Zbl0936.22001MR1740617
- Orsted B., Zhang G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J. 43 (1994), no. 2, 551–583. MR1291529DOI10.1512/iumj.1994.43.43023
- Stratonovich R.L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891–898. Zbl0082.19302MR0088173
- Unterberger A., Upmeier H., 10.1007/BF02101491, Commun. Math. Phys. 164 (1994), no. 3, 563–597. Zbl0843.32019MR1291245DOI10.1007/BF02101491
- Varadarajan V.S., Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics, 102, Springer, New York, 1984. Zbl0955.22500MR0746308
- Wallach N.R., The analytic continuation of the discrete series. I, Trans. Amer. Math. Soc. 251 (1979), 1–17. Zbl0419.22017MR0531967
- Wildberger N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. A 56 (1994), 64–116. Zbl0842.22015MR1250994DOI10.1017/S1446788700034741
- Zhang G., Berezin transform on line bundles over bounded symmetric domains, J. Lie Theory 10 (2000), 111–126. Zbl0946.43007MR1748086
- Zhang G., 10.1090/S0002-9947-01-02832-X, Trans. Amer. Math. Soc. 353 (2001), 3769–3787. Zbl0965.22015MR1837258DOI10.1090/S0002-9947-01-02832-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.