Berezin transform for non-scalar holomorphic discrete series

Benjamin Cahen

Commentationes Mathematicae Universitatis Carolinae (2012)

  • Volume: 53, Issue: 1, page 1-17
  • ISSN: 0010-2628

Abstract

top
Let M = G / K be a Hermitian symmetric space of the non-compact type and let π be a discrete series representation of G which is holomorphically induced from a unitary irreducible representation ρ of K . In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of π . Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with π .

How to cite

top

Cahen, Benjamin. "Berezin transform for non-scalar holomorphic discrete series." Commentationes Mathematicae Universitatis Carolinae 53.1 (2012): 1-17. <http://eudml.org/doc/246625>.

@article{Cahen2012,
abstract = {Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi $ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho $ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi $. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi $.},
author = {Cahen, Benjamin},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; discrete series representation; Hermitian symmetric space of the non-compact type; semi-simple non-compact Lie group; coherent states; reproducing kernel; adjoint orbit; Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; coherent state; reproducing kernel; adjoint orbit},
language = {eng},
number = {1},
pages = {1-17},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Berezin transform for non-scalar holomorphic discrete series},
url = {http://eudml.org/doc/246625},
volume = {53},
year = {2012},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Berezin transform for non-scalar holomorphic discrete series
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2012
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 53
IS - 1
SP - 1
EP - 17
AB - Let $M=G/K$ be a Hermitian symmetric space of the non-compact type and let $\pi $ be a discrete series representation of $G$ which is holomorphically induced from a unitary irreducible representation $\rho $ of $K$. In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of $\pi $. Here we study the corresponding Berezin transform and we show that it can be extended to a large class of symbols. As an application, we construct a Stratonovich-Weyl correspondence associated with $\pi $.
LA - eng
KW - Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; discrete series representation; Hermitian symmetric space of the non-compact type; semi-simple non-compact Lie group; coherent states; reproducing kernel; adjoint orbit; Berezin quantization; Berezin symbol; Stratonovich-Weyl correspondence; coherent state; reproducing kernel; adjoint orbit
UR - http://eudml.org/doc/246625
ER -

References

top
  1. Ali S.T., Engliš M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR2151954DOI10.1142/S0129055X05002376
  2. Arazy J., Upmeier H., Weyl calculus for complex and real symmetric domains, Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl1150.43302MR1984098
  3. Arazy J., Upmeier H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), Walter de Gruyter, Berlin, 2002, pp. 151–211. MR1943284
  4. Arnal D., Cahen M., Gutt S., Representations of compact Lie groups and quantization by deformation, Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR1027456
  5. Berezin F.A., Quantization, Math. USSR Izv. 8 (1974), no. 5, 1109–1165. Zbl0976.83531MR0395610
  6. F. A. Berezin, 10.1070/IM1975v009n02ABEH001480, Math. USSR Izv. 9 (1975), no. 2, 341–379. DOI10.1070/IM1975v009n02ABEH001480
  7. Bröcker T., tom Dieck T., 10.1007/978-3-662-12918-0_4, Graduate Texts in Mathematics, 98, Springer, New York, 1985. MR0781344DOI10.1007/978-3-662-12918-0_4
  8. Cahen B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177–190. Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
  9. Cahen B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), 66–84. MR2549798
  10. Cahen B., Berezin quantization for discrete series, Beiträge Algebra Geom. 51 (2010), 301–311. MR2682458
  11. B. Cahen, 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo 59 (2010), 331–354. Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
  12. Cahen B., Stratonovich-Weyl correspondence for discrete series representations, Arch. Math. (Brno) 47 (2011), 41–58. MR2813546
  13. Cahen B., Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2. 
  14. Cahen M., Gutt S., Rawnsley J., 10.1016/0393-0440(90)90019-Y, J. Geom. Phys. 7 (1990), 45–62. MR1094730DOI10.1016/0393-0440(90)90019-Y
  15. Cariñena J.F., Gracia-Bondìa J.M., Vàrilly J.C., 10.1088/0305-4470/23/6/015, J. Phys. A 23 (1990), 901–933. DOI10.1088/0305-4470/23/6/015
  16. Davidson M., Òlafsson G., Zhang G., 10.1016/S0022-1236(03)00101-0, J. Funct. Anal. 204 (2003), 157–195. MR2004748DOI10.1016/S0022-1236(03)00101-0
  17. De Oliveira M.P., 10.1023/A:1011915708964, Geom. Dedicata 86 (2001), 227–247. Zbl0996.32011MR1856428DOI10.1023/A:1011915708964
  18. Folland B., Harmonic Analysis in Phase Space, Princeton University Press, Princeton, 1989. Zbl0682.43001MR0983366
  19. Figueroa H., Gracia-Bondìa J.M., Vàrilly J.C., 10.1063/1.528967, J. Math. Phys. 31 (1990), 2664-2671. MR1075750DOI10.1063/1.528967
  20. Gracia-Bondìa J.M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, American Mathematical Society, Providence, RI, 1992, pp. 93-114. MR1187280
  21. Helgason S., Differential Geometry, Lie Groups and Symmetric Spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, Rhode Island, 2001. Zbl0993.53002MR1834454
  22. Herb R.A., Wolf J.A., 10.1016/0022-1236(87)90057-7, J. Funct. Anal. 73 (1987), 1–37. Zbl0625.22010MR0890655DOI10.1016/0022-1236(87)90057-7
  23. Knapp A.W., Representation Theory of Semi-simple Groups. An Overview Based on Examples, Princeton Math. Series, 36, Princeton University Press, Princeton, NJ, 1986. MR0855239
  24. Kirillov A.A., Lectures on the Orbit Method, Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, Rhode Island, 2004. MR2069175
  25. Moore C.C., 10.2307/2373170, Amer. J. Math. 86 (1964), no. 2, 358–378. MR0161943DOI10.2307/2373170
  26. Neeb K.-H., Holomorphy and Convexity in Lie Theory, de Gruyter Expositions in Mathematics, 28, Walter de Gruyter, Berlin, New York, 2000. Zbl0936.22001MR1740617
  27. Orsted B., Zhang G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J. 43 (1994), no. 2, 551–583. MR1291529DOI10.1512/iumj.1994.43.43023
  28. Stratonovich R.L., On distributions in representation space, Soviet Physics. JETP 4 (1957), 891–898. Zbl0082.19302MR0088173
  29. Unterberger A., Upmeier H., 10.1007/BF02101491, Commun. Math. Phys. 164 (1994), no. 3, 563–597. Zbl0843.32019MR1291245DOI10.1007/BF02101491
  30. Varadarajan V.S., Lie groups, Lie algebras and their representations, Graduate Texts in Mathematics, 102, Springer, New York, 1984. Zbl0955.22500MR0746308
  31. Wallach N.R., The analytic continuation of the discrete series. I, Trans. Amer. Math. Soc. 251 (1979), 1–17. Zbl0419.22017MR0531967
  32. Wildberger N.J., 10.1017/S1446788700034741, J. Austral. Math. Soc. A 56 (1994), 64–116. Zbl0842.22015MR1250994DOI10.1017/S1446788700034741
  33. Zhang G., Berezin transform on line bundles over bounded symmetric domains, J. Lie Theory 10 (2000), 111–126. Zbl0946.43007MR1748086
  34. Zhang G., 10.1090/S0002-9947-01-02832-X, Trans. Amer. Math. Soc. 353 (2001), 3769–3787. Zbl0965.22015MR1837258DOI10.1090/S0002-9947-01-02832-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.