Stratonovich-Weyl correspondence for discrete series representations
Archivum Mathematicum (2011)
- Volume: 047, Issue: 1, page 51-68
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topCahen, Benjamin. "Stratonovich-Weyl correspondence for discrete series representations." Archivum Mathematicum 047.1 (2011): 51-68. <http://eudml.org/doc/116533>.
@article{Cahen2011,
abstract = {Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak \{g\}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak \{g\}$.},
author = {Cahen, Benjamin},
journal = {Archivum Mathematicum},
keywords = {Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states; Stratonovich-Weyl correspondence; Berezin quantization; semisimple Lie group; coadjoint orbit; discrete series representation; reproducing kernel Hilbert space},
language = {eng},
number = {1},
pages = {51-68},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stratonovich-Weyl correspondence for discrete series representations},
url = {http://eudml.org/doc/116533},
volume = {047},
year = {2011},
}
TY - JOUR
AU - Cahen, Benjamin
TI - Stratonovich-Weyl correspondence for discrete series representations
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 1
SP - 51
EP - 68
AB - Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak {g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak {g}$.
LA - eng
KW - Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states; Stratonovich-Weyl correspondence; Berezin quantization; semisimple Lie group; coadjoint orbit; discrete series representation; reproducing kernel Hilbert space
UR - http://eudml.org/doc/116533
ER -
References
top- Ali, S. T., Englis, M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (4) (2005), 391–490. (2005) Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
- Arazy, J., Upmeier, H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. (2002) MR1943284
- Arazy, J., Upmeier, H., Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. (2002) Zbl1150.43302MR1984098
- Arnal, D., Cahen, M., Gutt, S., Exponential and holomorphic discrete series, Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. (1989) Zbl0697.22010MR1022747
- Arratia, O., Del Olmo, M. A., 10.1016/S0034-4877(97)85911-3, Rep. Math. Phys. 40 (1997), 149–157. (1997) Zbl0904.58022MR1614685DOI10.1016/S0034-4877(97)85911-3
- Ballesteros, A., Gadella, M., Del Olmo, M. A., 10.1063/1.529939, J. Math. Phys. 33 (1992), 3379–3386. (1992) Zbl0788.22025MR1182909DOI10.1063/1.529939
- Berezin, F. A., Quantization, Math. USSR–Izv. 8 (1974), 1109–1165, Russian. (1974) Zbl0312.53049
- Berezin, F. A., Quantization in complex symmetric domains, Math. USSR–Izv. 9 (1975), 341–379. (1975)
- Brif, C., Mann, A., 10.1103/PhysRevA.59.971, Phys. Rev. A 59 (2) (1999), 971–987. (1999) MR1679730DOI10.1103/PhysRevA.59.971
- Cahen, B., Contraction de vers le groupe de Heisenberg, Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. (2004) Zbl1074.22005MR2143420
- Cahen, B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177–190. (2007) Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
- Cahen, B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), 66–84. (2009) Zbl1183.22006MR2549798
- Cahen, B., Contraction of discrete series via Berezin quantization, J. Lie Theory 19 (2009), 291–310. (2009) Zbl1185.22007MR2572131
- Cahen, B., Berezin quantization for discrete series, Beiträge Algebra Geom. 51 (2010), 301–311. (2010) MR2682458
- Cahen, B., 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. (2010) Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
- Cahen, M., Gutt, S., Rawnsley, J., 10.1007/BF00739094, Lett. Math. Phys. 34 (1995), 159–168. (1995) MR1335583DOI10.1007/BF00739094
- Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C., 10.1088/0305-4470/23/6/015, J. Phys. A 23 (1990), 901–933. (1990) DOI10.1088/0305-4470/23/6/015
- Davidson, M., Òlafsson, G., Zhang, G., 10.1016/S0022-1236(03)00101-0, J. Funct. Anal. 204 (2003), 157–195. (2003) Zbl1035.32014MR2004748DOI10.1016/S0022-1236(03)00101-0
- Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C., 10.1063/1.528967, J. Math. Phys. 31 (1990), 2664–2671. (1990) MR1075750DOI10.1063/1.528967
- Folland, B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. (1989) Zbl0682.43001MR0983366
- Gracia–Bondìa, J. M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. (1992) MR1187280
- Gracia–Bondìa, J. M., Vàrilly, J. C., 10.1016/0003-4916(89)90262-5, Ann. Physics 190 (1989), 107–148. (1989) MR0994048DOI10.1016/0003-4916(89)90262-5
- Helgason, S., Differential geometry, Lie groups and symmetric spaces, Grad. Stud. Math. 34 (2001). (2001) Zbl0993.53002MR1834454
- Herb, R. A., Wolf, J. A., 10.1016/0022-1236(87)90057-7, J. Funct. Anal. 73 (1987), 1–37. (1987) Zbl0625.22010MR0890655DOI10.1016/0022-1236(87)90057-7
- Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. (1963) MR0171936
- Kirillov, A. A., Lectures on the orbit method, Grad. Stud. Math. 64 (2004). (2004) Zbl1229.22003MR2069175
- Knapp, A. W., Representation theory of semi–simple groups. An overview based on examples, Princeton Math. Ser. 36 (1986). (1986)
- Moore, C. C., 10.2307/2373170, Amer. J. Math. 86 (2) (1964), 358–378. (1964) MR0161943DOI10.2307/2373170
- Neeb, K.–H., Holomorphy and Convexity in Lie Theory, de Gruyter Exp. Math. 28 (2000), xxii+778 pp. (2000) MR1740617
- Nomura, T., Berezin transforms and group representations, J. Lie Theory 8 (1998), 433–440. (1998) Zbl0919.43008MR1650386
- Oliveira, M. P. De, 10.1023/A:1011915708964, Geom. Dedicata 86 (2001), 227–247. (2001) Zbl0996.32011MR1856428DOI10.1023/A:1011915708964
- Ørsted, B., Zhang, G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J. 43 (2) (1994), 551–583. (1994) MR1291529DOI10.1512/iumj.1994.43.43023
- Peetre, J., Zhang, G., A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math. 43 (1992), 273–301. (1992) MR1252736
- Satake, I., Algebraic structures of symmetric domains, Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. (1971) MR0591460
- Stratonovich, R. L., On distributions in representation space, Soviet Physics JETP 4 (1957), 891–898. (1957) MR0088173
- Unterberger, A., Upmeier, H., 10.1007/BF02101491, Comm. Math. Phys. 164 (3) (1994), 563–597. (1994) Zbl0843.32019MR1291245DOI10.1007/BF02101491
- Varadarajan, V. S., Lie groups, Lie algebras and their representations, Grad. Texts in Math. 102 (1984), xiii+430 pp. (1984) Zbl0955.22500MR0746308
- Wildberger, N. J., 10.1017/S1446788700034741, J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. (1994) Zbl0842.22015MR1250994DOI10.1017/S1446788700034741
- Zhang, G., 10.1007/s002290050109, Manuscripta Math. 97 (1998), 371–388. (1998) Zbl0920.22008MR1654800DOI10.1007/s002290050109
Citations in EuDML Documents
top- Benjamin Cahen, Berezin transform for non-scalar holomorphic discrete series
- Benjamin Cahen, Global Parametrization of Scalar Holomorphic Coadjoint Orbits of a Quasi-Hermitian Lie Group
- Benjamin Cahen, Stratonovich-Weyl correspondence for the Jacobi group
- Benjamin Cahen, Berezin quantization and holomorphic representations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.