Stratonovich-Weyl correspondence for discrete series representations

Benjamin Cahen

Archivum Mathematicum (2011)

  • Volume: 047, Issue: 1, page 51-68
  • ISSN: 0044-8753

Abstract

top
Let M = G / K be a Hermitian symmetric space of the noncompact type and let π be a discrete series representation of G holomorphically induced from a unitary character of K . Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple ( G , π , M ) by a suitable modification of the Berezin calculus on M . We extend the corresponding Berezin transform to a class of functions on M which contains the Berezin symbol of d π ( X ) for X in the Lie algebra 𝔤 of G . This allows us to define and to study the Stratonovich-Weyl symbol of d π ( X ) for X 𝔤 .

How to cite

top

Cahen, Benjamin. "Stratonovich-Weyl correspondence for discrete series representations." Archivum Mathematicum 047.1 (2011): 51-68. <http://eudml.org/doc/116533>.

@article{Cahen2011,
abstract = {Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak \{g\}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak \{g\}$.},
author = {Cahen, Benjamin},
journal = {Archivum Mathematicum},
keywords = {Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states; Stratonovich-Weyl correspondence; Berezin quantization; semisimple Lie group; coadjoint orbit; discrete series representation; reproducing kernel Hilbert space},
language = {eng},
number = {1},
pages = {51-68},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Stratonovich-Weyl correspondence for discrete series representations},
url = {http://eudml.org/doc/116533},
volume = {047},
year = {2011},
}

TY - JOUR
AU - Cahen, Benjamin
TI - Stratonovich-Weyl correspondence for discrete series representations
JO - Archivum Mathematicum
PY - 2011
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 047
IS - 1
SP - 51
EP - 68
AB - Let $M=G/K$ be a Hermitian symmetric space of the noncompact type and let $\pi $ be a discrete series representation of $G$ holomorphically induced from a unitary character of $K$. Following an idea of Figueroa, Gracia-Bondìa and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple $(G, \pi , M)$ by a suitable modification of the Berezin calculus on $M$. We extend the corresponding Berezin transform to a class of functions on $M$ which contains the Berezin symbol of $d\pi (X)$ for $X$ in the Lie algebra $\mathfrak {g}$ of $G$. This allows us to define and to study the Stratonovich-Weyl symbol of $d\pi (X)$ for $X\in \mathfrak {g}$.
LA - eng
KW - Stratonovich-Weyl correspondence; Berezin quantization; Berezin transform; semisimple Lie group; coadjoint orbits; unitary representation; Hermitian symmetric space of the noncompact type; discrete series representation; reproducing kernel Hilbert space; coherent states; Stratonovich-Weyl correspondence; Berezin quantization; semisimple Lie group; coadjoint orbit; discrete series representation; reproducing kernel Hilbert space
UR - http://eudml.org/doc/116533
ER -

References

top
  1. Ali, S. T., Englis, M., 10.1142/S0129055X05002376, Rev. Math. Phys. 17 (4) (2005), 391–490. (2005) Zbl1075.81038MR2151954DOI10.1142/S0129055X05002376
  2. Arazy, J., Upmeier, H., Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains, Function spaces, interpolation theory and related topics, Lund, de Gruyter, Berlin, 2002, pp. 151–211. (2002) MR1943284
  3. Arazy, J., Upmeier, H., Weyl Calculus for Complex and Real Symmetric Domains, Harmonic analysis on complex homogeneous domains and Lie groups (Rome, 2001), vol. 13 (3–4), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 2002, pp. 165–181. (2002) Zbl1150.43302MR1984098
  4. Arnal, D., Cahen, M., Gutt, S., Exponential and holomorphic discrete series, Bull. Soc. Math. Belg. Sér. B 41 (1989), 207–227. (1989) Zbl0697.22010MR1022747
  5. Arratia, O., Del Olmo, M. A., 10.1016/S0034-4877(97)85911-3, Rep. Math. Phys. 40 (1997), 149–157. (1997) Zbl0904.58022MR1614685DOI10.1016/S0034-4877(97)85911-3
  6. Ballesteros, A., Gadella, M., Del Olmo, M. A., 10.1063/1.529939, J. Math. Phys. 33 (1992), 3379–3386. (1992) Zbl0788.22025MR1182909DOI10.1063/1.529939
  7. Berezin, F. A., Quantization, Math. USSR–Izv. 8 (1974), 1109–1165, Russian. (1974) Zbl0312.53049
  8. Berezin, F. A., Quantization in complex symmetric domains, Math. USSR–Izv. 9 (1975), 341–379. (1975) 
  9. Brif, C., Mann, A., 10.1103/PhysRevA.59.971, Phys. Rev. A 59 (2) (1999), 971–987. (1999) MR1679730DOI10.1103/PhysRevA.59.971
  10. Cahen, B., Contraction de S U ( 1 , 1 ) vers le groupe de Heisenberg, Mathematical works, Part XV, Luxembourg: Université du Luxembourg, Séminaire de Mathématique, 2004, pp. 19–43. (2004) Zbl1074.22005MR2143420
  11. Cahen, B., 10.1016/j.difgeo.2006.08.005, Differential Geom. Appl. 25 (2007), 177–190. (2007) Zbl1117.81087MR2311733DOI10.1016/j.difgeo.2006.08.005
  12. Cahen, B., Berezin quantization on generalized flag manifolds, Math. Scand. 105 (2009), 66–84. (2009) Zbl1183.22006MR2549798
  13. Cahen, B., Contraction of discrete series via Berezin quantization, J. Lie Theory 19 (2009), 291–310. (2009) Zbl1185.22007MR2572131
  14. Cahen, B., Berezin quantization for discrete series, Beiträge Algebra Geom. 51 (2010), 301–311. (2010) MR2682458
  15. Cahen, B., 10.1007/s12215-010-0026-y, Rend. Circ. Mat. Palermo (2) 59 (2010), 331–354. (2010) Zbl1218.22008MR2745515DOI10.1007/s12215-010-0026-y
  16. Cahen, M., Gutt, S., Rawnsley, J., 10.1007/BF00739094, Lett. Math. Phys. 34 (1995), 159–168. (1995) MR1335583DOI10.1007/BF00739094
  17. Cariñena, J. F., Gracia–Bondìa, J. M., Vàrilly, J. C., 10.1088/0305-4470/23/6/015, J. Phys. A 23 (1990), 901–933. (1990) DOI10.1088/0305-4470/23/6/015
  18. Davidson, M., Òlafsson, G., Zhang, G., 10.1016/S0022-1236(03)00101-0, J. Funct. Anal. 204 (2003), 157–195. (2003) Zbl1035.32014MR2004748DOI10.1016/S0022-1236(03)00101-0
  19. Figueroa, H., Gracia–Bondìa, J. M., Vàrilly, J. C., 10.1063/1.528967, J. Math. Phys. 31 (1990), 2664–2671. (1990) MR1075750DOI10.1063/1.528967
  20. Folland, B., Harmonic Analysis in Phase Space, Princeton Univ. Press, 1989. (1989) Zbl0682.43001MR0983366
  21. Gracia–Bondìa, J. M., Generalized Moyal quantization on homogeneous symplectic spaces, Deformation theory and quantum groups with applications to mathematical physics, vol. 134, Amherst, MA, 1990, Contemp. Math., 1992, pp. 93–114. (1992) MR1187280
  22. Gracia–Bondìa, J. M., Vàrilly, J. C., 10.1016/0003-4916(89)90262-5, Ann. Physics 190 (1989), 107–148. (1989) MR0994048DOI10.1016/0003-4916(89)90262-5
  23. Helgason, S., Differential geometry, Lie groups and symmetric spaces, Grad. Stud. Math. 34 (2001). (2001) Zbl0993.53002MR1834454
  24. Herb, R. A., Wolf, J. A., 10.1016/0022-1236(87)90057-7, J. Funct. Anal. 73 (1987), 1–37. (1987) Zbl0625.22010MR0890655DOI10.1016/0022-1236(87)90057-7
  25. Hua, L. K., Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. (1963) MR0171936
  26. Kirillov, A. A., Lectures on the orbit method, Grad. Stud. Math. 64 (2004). (2004) Zbl1229.22003MR2069175
  27. Knapp, A. W., Representation theory of semi–simple groups. An overview based on examples, Princeton Math. Ser. 36 (1986). (1986) 
  28. Moore, C. C., 10.2307/2373170, Amer. J. Math. 86 (2) (1964), 358–378. (1964) MR0161943DOI10.2307/2373170
  29. Neeb, K.–H., Holomorphy and Convexity in Lie Theory, de Gruyter Exp. Math. 28 (2000), xxii+778 pp. (2000) MR1740617
  30. Nomura, T., Berezin transforms and group representations, J. Lie Theory 8 (1998), 433–440. (1998) Zbl0919.43008MR1650386
  31. Oliveira, M. P. De, 10.1023/A:1011915708964, Geom. Dedicata 86 (2001), 227–247. (2001) Zbl0996.32011MR1856428DOI10.1023/A:1011915708964
  32. Ørsted, B., Zhang, G., 10.1512/iumj.1994.43.43023, Indiana Univ. Math. J. 43 (2) (1994), 551–583. (1994) MR1291529DOI10.1512/iumj.1994.43.43023
  33. Peetre, J., Zhang, G., A weighted Plancherel formula III. The case of a hyperbolic matrix ball, Collect. Math. 43 (1992), 273–301. (1992) MR1252736
  34. Satake, I., Algebraic structures of symmetric domains, Iwanami Sho–ten, Tokyo and Princeton Univ. Press, 1971. (1971) MR0591460
  35. Stratonovich, R. L., On distributions in representation space, Soviet Physics JETP 4 (1957), 891–898. (1957) MR0088173
  36. Unterberger, A., Upmeier, H., 10.1007/BF02101491, Comm. Math. Phys. 164 (3) (1994), 563–597. (1994) Zbl0843.32019MR1291245DOI10.1007/BF02101491
  37. Varadarajan, V. S., Lie groups, Lie algebras and their representations, Grad. Texts in Math. 102 (1984), xiii+430 pp. (1984) Zbl0955.22500MR0746308
  38. Wildberger, N. J., 10.1017/S1446788700034741, J. Austral. Math. Soc. Ser. A 56 (1994), 64–116. (1994) Zbl0842.22015MR1250994DOI10.1017/S1446788700034741
  39. Zhang, G., 10.1007/s002290050109, Manuscripta Math. 97 (1998), 371–388. (1998) Zbl0920.22008MR1654800DOI10.1007/s002290050109

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.