On co-ordinated quasi-convex functions

M. Emin Özdemir; Ahmet Ocak Akdemir; Çetin Yıldız

Czechoslovak Mathematical Journal (2012)

  • Volume: 62, Issue: 4, page 889-900
  • ISSN: 0011-4642

Abstract

top
A function f : I , where I is an interval, is said to be a convex function on I if f ( t x + ( 1 - t ) y ) t f ( x ) + ( 1 - t ) f ( y ) holds for all x , y I and t [ 0 , 1 ] . There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir’s results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.

How to cite

top

Özdemir, M. Emin, Akdemir, Ahmet Ocak, and Yıldız, Çetin. "On co-ordinated quasi-convex functions." Czechoslovak Mathematical Journal 62.4 (2012): 889-900. <http://eudml.org/doc/246668>.

@article{Özdemir2012,
abstract = {A function $f\colon I\rightarrow \mathbb \{R\}$, where $I\subseteq \mathbb \{R\}$ is an interval, is said to be a convex function on $I$ if \[ f( tx+( 1-t) y) \le tf( x) +(1-t) f( y) \] holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir’s results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.},
author = {Özdemir, M. Emin, Akdemir, Ahmet Ocak, Yıldız, Çetin},
journal = {Czechoslovak Mathematical Journal},
keywords = {co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex},
language = {eng},
number = {4},
pages = {889-900},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On co-ordinated quasi-convex functions},
url = {http://eudml.org/doc/246668},
volume = {62},
year = {2012},
}

TY - JOUR
AU - Özdemir, M. Emin
AU - Akdemir, Ahmet Ocak
AU - Yıldız, Çetin
TI - On co-ordinated quasi-convex functions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 889
EP - 900
AB - A function $f\colon I\rightarrow \mathbb {R}$, where $I\subseteq \mathbb {R}$ is an interval, is said to be a convex function on $I$ if \[ f( tx+( 1-t) y) \le tf( x) +(1-t) f( y) \] holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir’s results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.
LA - eng
KW - co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex
UR - http://eudml.org/doc/246668
ER -

References

top
  1. Alomari, M., Darus, M., Dragomir, S. S., 10.5556/j.tkjm.41.2010.498, Tamkang J. Math. 41 353-359 (2010). (2010) Zbl1214.26003MR2789971DOI10.5556/j.tkjm.41.2010.498
  2. Alomari, M. W., Darus, M., Kirmaci, U. S., 10.1016/j.camwa.2009.08.002, Comput. Math. Appl. 59 225-232 (2010). (2010) Zbl1189.26037MR2575509DOI10.1016/j.camwa.2009.08.002
  3. Alomari, M., Darus, M., On some inequalities Simpson-type via quasi-convex functions with applications, Transylv. J. Math. Mech. 2 (2010), 15-24. (2010) MR2817188
  4. Alomari, M., Darus, M., Hadamard-type inequalities for s -convex functions, Int. Math. Forum 3 (2008), 1965-1975. (2008) Zbl1163.26325MR2470655
  5. Alomari, M., Darus, M., The Hadamard’s inequality for s -convex function of 2 -variables on the co-ordinates, Int. J. Math. Anal., Ruse 2 (2008), 629-638. (2008) Zbl1178.26017MR2482668
  6. Alomari, M., Darus, M., Coordinated s -convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci. 3 (2008), 1557-1567. (2008) Zbl1178.26015MR2514034
  7. Dragomir, S. S., 10.11650/twjm/1500574995, Taiwanese J. Math. 5 (2001), 775-788. (2001) Zbl1002.26017MR1870047DOI10.11650/twjm/1500574995
  8. Dragomir, S. S., Pearce, C. E. M., 10.1017/S0004972700031786, Bull. Aust. Math. Soc. 57 (1998), 377-385. (1998) Zbl0908.26015MR1623227DOI10.1017/S0004972700031786
  9. Hwang, D. Y., Tseng, K. L., Yang, G. S., 10.11650/twjm/1500404635, Taiwanese J. Math. 11 (2007), 63-73. (2007) Zbl1132.26360MR2304005DOI10.11650/twjm/1500404635
  10. Ion, D. A., Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, An. Univ. Craiova, Ser. Mat. Inf. 34 (2007), 83-88. (2007) Zbl1174.26321MR2517875
  11. Bakula, M. Klaričić, Pečarić, J., 10.11650/twjm/1500557302, Taiwanese J. Math. 10 (2006), 1271-1292. (2006) MR2253378DOI10.11650/twjm/1500557302
  12. Latif, M. A., Alomari, M., On Hadamard-type inequalities for h -convex functions on the co-ordinates, Int. J. Math. Anal., Ruse 3 (2009), 1645-1656. (2009) MR2657722
  13. Latif, M. A., Alomari, M., Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum 4 (2009), 2327-2338. (2009) Zbl1197.26029MR2579666
  14. Özdemir, M. E., Kavurmacı, H., Akdemir, A. O., Avcı, M., 10.1186/1029-242X-2012-20, J. Inequal. Appl. 2012:20 (2012), 19 pp doi:10.1186/1029-242X-2012-20. (2012) MR2935480DOI10.1186/1029-242X-2012-20
  15. Özdemir, M. E., Latif, M. A., Akdemir, A. O., 10.1186/1029-242X-2012-21, J. Inequal. Appl. 2012:21 (2012), 13 pp doi:10.1186/1029-242X-2012-21. (2012) MR2892628DOI10.1186/1029-242X-2012-21
  16. Özdemir, M. E., Set, E., kaya, M. Z. Sarı, Some new Hadamard type inequalities for co-ordinated m -convex and ( α , m ) -convex functions, Hacet. J. Math. Stat. 40 219-229 (2011). (2011) MR2839189
  17. Pečarić, J. E., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston (1992). (1992) Zbl0749.26004MR1162312
  18. Tseng, K.-L., Yang, G.-S., Dragomir, S. S., On quasi convex functions and Hadamard's inequality, Demonstr. Math. 41 323-336 (2008). (2008) Zbl1151.26333MR2419910
  19. Wright, E. M., 10.2307/2307675, Amer. Math. Monthly 61 (1954), 620-622. (1954) Zbl0057.04801MR0064828DOI10.2307/2307675

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.