On co-ordinated quasi-convex functions
M. Emin Özdemir; Ahmet Ocak Akdemir; Çetin Yıldız
Czechoslovak Mathematical Journal (2012)
- Volume: 62, Issue: 4, page 889-900
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topÖzdemir, M. Emin, Akdemir, Ahmet Ocak, and Yıldız, Çetin. "On co-ordinated quasi-convex functions." Czechoslovak Mathematical Journal 62.4 (2012): 889-900. <http://eudml.org/doc/246668>.
@article{Özdemir2012,
abstract = {A function $f\colon I\rightarrow \mathbb \{R\}$, where $I\subseteq \mathbb \{R\}$ is an interval, is said to be a convex function on $I$ if \[ f( tx+( 1-t) y) \le tf( x) +(1-t) f( y) \]
holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir’s results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.},
author = {Özdemir, M. Emin, Akdemir, Ahmet Ocak, Yıldız, Çetin},
journal = {Czechoslovak Mathematical Journal},
keywords = {co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex},
language = {eng},
number = {4},
pages = {889-900},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On co-ordinated quasi-convex functions},
url = {http://eudml.org/doc/246668},
volume = {62},
year = {2012},
}
TY - JOUR
AU - Özdemir, M. Emin
AU - Akdemir, Ahmet Ocak
AU - Yıldız, Çetin
TI - On co-ordinated quasi-convex functions
JO - Czechoslovak Mathematical Journal
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 62
IS - 4
SP - 889
EP - 900
AB - A function $f\colon I\rightarrow \mathbb {R}$, where $I\subseteq \mathbb {R}$ is an interval, is said to be a convex function on $I$ if \[ f( tx+( 1-t) y) \le tf( x) +(1-t) f( y) \]
holds for all $x,y\in I$ and $t\in [ 0,1] $. There are several papers in the literature which discuss properties of convexity and contain integral inequalities. Furthermore, new classes of convex functions have been introduced in order to generalize the results and to obtain new estimations. We define some new classes of convex functions that we name quasi-convex, Jensen-convex, Wright-convex, Jensen-quasi-convex and Wright-quasi-convex functions on the co-ordinates. We also prove some inequalities of Hadamard-type as Dragomir’s results in Theorem 5, but now for Jensen-quasi-convex and Wright-quasi-convex functions. Finally, we give some inclusions which clarify the relationship between these new classes of functions.
LA - eng
KW - co-ordinate; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex; quasi-convex; Wright-quasi-convex; Jensen-quasi-convex
UR - http://eudml.org/doc/246668
ER -
References
top- Alomari, M., Darus, M., Dragomir, S. S., 10.5556/j.tkjm.41.2010.498, Tamkang J. Math. 41 353-359 (2010). (2010) Zbl1214.26003MR2789971DOI10.5556/j.tkjm.41.2010.498
- Alomari, M. W., Darus, M., Kirmaci, U. S., 10.1016/j.camwa.2009.08.002, Comput. Math. Appl. 59 225-232 (2010). (2010) Zbl1189.26037MR2575509DOI10.1016/j.camwa.2009.08.002
- Alomari, M., Darus, M., On some inequalities Simpson-type via quasi-convex functions with applications, Transylv. J. Math. Mech. 2 (2010), 15-24. (2010) MR2817188
- Alomari, M., Darus, M., Hadamard-type inequalities for -convex functions, Int. Math. Forum 3 (2008), 1965-1975. (2008) Zbl1163.26325MR2470655
- Alomari, M., Darus, M., The Hadamard’s inequality for -convex function of -variables on the co-ordinates, Int. J. Math. Anal., Ruse 2 (2008), 629-638. (2008) Zbl1178.26017MR2482668
- Alomari, M., Darus, M., Coordinated -convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci. 3 (2008), 1557-1567. (2008) Zbl1178.26015MR2514034
- Dragomir, S. S., 10.11650/twjm/1500574995, Taiwanese J. Math. 5 (2001), 775-788. (2001) Zbl1002.26017MR1870047DOI10.11650/twjm/1500574995
- Dragomir, S. S., Pearce, C. E. M., 10.1017/S0004972700031786, Bull. Aust. Math. Soc. 57 (1998), 377-385. (1998) Zbl0908.26015MR1623227DOI10.1017/S0004972700031786
- Hwang, D. Y., Tseng, K. L., Yang, G. S., 10.11650/twjm/1500404635, Taiwanese J. Math. 11 (2007), 63-73. (2007) Zbl1132.26360MR2304005DOI10.11650/twjm/1500404635
- Ion, D. A., Some estimates on the Hermite-Hadamard inequality through quasi-convex functions, An. Univ. Craiova, Ser. Mat. Inf. 34 (2007), 83-88. (2007) Zbl1174.26321MR2517875
- Bakula, M. Klaričić, Pečarić, J., 10.11650/twjm/1500557302, Taiwanese J. Math. 10 (2006), 1271-1292. (2006) MR2253378DOI10.11650/twjm/1500557302
- Latif, M. A., Alomari, M., On Hadamard-type inequalities for -convex functions on the co-ordinates, Int. J. Math. Anal., Ruse 3 (2009), 1645-1656. (2009) MR2657722
- Latif, M. A., Alomari, M., Hadamard-type inequalities for product two convex functions on the co-ordinates, Int. Math. Forum 4 (2009), 2327-2338. (2009) Zbl1197.26029MR2579666
- Özdemir, M. E., Kavurmacı, H., Akdemir, A. O., Avcı, M., 10.1186/1029-242X-2012-20, J. Inequal. Appl. 2012:20 (2012), 19 pp doi:10.1186/1029-242X-2012-20. (2012) MR2935480DOI10.1186/1029-242X-2012-20
- Özdemir, M. E., Latif, M. A., Akdemir, A. O., 10.1186/1029-242X-2012-21, J. Inequal. Appl. 2012:21 (2012), 13 pp doi:10.1186/1029-242X-2012-21. (2012) MR2892628DOI10.1186/1029-242X-2012-21
- Özdemir, M. E., Set, E., kaya, M. Z. Sarı, Some new Hadamard type inequalities for co-ordinated -convex and -convex functions, Hacet. J. Math. Stat. 40 219-229 (2011). (2011) MR2839189
- Pečarić, J. E., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston (1992). (1992) Zbl0749.26004MR1162312
- Tseng, K.-L., Yang, G.-S., Dragomir, S. S., On quasi convex functions and Hadamard's inequality, Demonstr. Math. 41 323-336 (2008). (2008) Zbl1151.26333MR2419910
- Wright, E. M., 10.2307/2307675, Amer. Math. Monthly 61 (1954), 620-622. (1954) Zbl0057.04801MR0064828DOI10.2307/2307675
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.