Monotone modal operators on bounded integral residuated lattices
Mathematica Bohemica (2012)
- Volume: 137, Issue: 3, page 333-345
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topRachůnek, Jiří, and Svoboda, Zdeněk. "Monotone modal operators on bounded integral residuated lattices." Mathematica Bohemica 137.3 (2012): 333-345. <http://eudml.org/doc/246737>.
@article{Rachůnek2012,
abstract = {Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.},
author = {Rachůnek, Jiří, Svoboda, Zdeněk},
journal = {Mathematica Bohemica},
keywords = {residuated lattice; bounded integral residuated lattice; modal operator; closure operator; residuated lattice; bounded integral residuated lattice; modal operator; closure operator},
language = {eng},
number = {3},
pages = {333-345},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monotone modal operators on bounded integral residuated lattices},
url = {http://eudml.org/doc/246737},
volume = {137},
year = {2012},
}
TY - JOUR
AU - Rachůnek, Jiří
AU - Svoboda, Zdeněk
TI - Monotone modal operators on bounded integral residuated lattices
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 3
SP - 333
EP - 345
AB - Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
LA - eng
KW - residuated lattice; bounded integral residuated lattice; modal operator; closure operator; residuated lattice; bounded integral residuated lattice; modal operator; closure operator
UR - http://eudml.org/doc/246737
ER -
References
top- Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C., Cancellative residuated lattices, Algebra Univers. 50 (2003), 83-106. (2003) Zbl1092.06012MR2026830
- Balbes, R., Dwinger, P., Distributive Lattices, University Missouri Press, Columbia (1974). (1974) Zbl0321.06012MR0373985
- Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht (2000). (2000) Zbl0937.06009
- Ciungu, L. C., Classes of residuated lattices, Annals of University of Craiova, Math. Comp. Sci. Ser. 33 (2006), 180-207. (2006) MR2359903
- DiNola, A., Georgescu, G., Iorgulesu, A., Psedo-BL algebras; Part I, Multiple Val. Logic 8 (2002), 673-714. (2002) MR1948853
- Dowker, C. H., Papert, D., Quotient Frames and Subspaces, Proc. London Math. Soc. 16 (1966), 275-296. (1966) Zbl0136.43405MR0202648
- Dvurečenskij, A., 10.1007/s00500-006-0078-2, Soft Comput. 11 (2007), 495-501. (2007) Zbl1122.06012DOI10.1007/s00500-006-0078-2
- Dvurečenskij, A., Rachůnek, J., On Riečan and Bosbach states for bounded Rl-monoids, Math. Slovaca 56 (2006), 487-500. (2006) MR2293582
- Dvurečenskij, A., Rachůnek, J., 10.1016/j.disc.2005.12.024, Discrete Math. 306 (2006), 1317-1326. (2006) MR2237716DOI10.1016/j.disc.2005.12.024
- Dvurečenskij, A., Rachůnek, J., 10.1007/s00233-005-0545-6, Semigroup Forum 72 (2006), 191-206. (2006) MR2216089DOI10.1007/s00233-005-0545-6
- Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets Syst. 124 (2001), 271-288. (2001) Zbl0994.03017MR1860848
- Flondor, P., Georgescu, G., Iorgulescu, A., 10.1007/s005000100137, Soft Comput. 5 (2001), 355-371. (2001) Zbl0995.03048MR1948853DOI10.1007/s005000100137
- Freyd, P. J., 10.1017/S0004972700044828, Bull. Austral. Math. Soc. 7 (1972), 1-76. (1972) Zbl0252.18002MR0396714DOI10.1017/S0004972700044828
- Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, Amsterdam (2007). (2007) Zbl1171.03001MR2531579
- Georgescu, G., Iorgulescu, A., Pseudo- algebras, Multiple Val. Logic 6 (2001), 95-135. (2001) Zbl1014.06008MR1817439
- Hájek, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht (1998). (1998) MR1900263
- Harlenderová, M., Rachůnek, J., Modal operators on -algebras, Math. Bohem. 131 (2006), 39-48. (2006) Zbl1112.06014MR2211002
- Jipsen, P., Tsinakis, C., A Survey of Residuated Lattices, Ordered Algebraic Structures, Kluwer, Dordrecht (2006), 19-56. (2006) MR2083033
- Kondo, M., 10.2478/s12175-010-0055-1, Math. Slovaca 61 (2011), 1-14. (2011) Zbl1265.03081MR2772354DOI10.2478/s12175-010-0055-1
- Lawvere, F. W., Quantifiers and Sheaves, Actes Congr. internat. Math. 1 (1971), 329-334. (1971) Zbl0261.18010MR0430021
- Lawvere, F. W., Toposes, Algebraic Geometry and Logic, Lecture Notes 274, Springer, Berlin (1972). (1972) Zbl0233.00005MR0330254
- Macnab, D. S., 10.1007/BF02483860, Alg. Univ. 12 (1981), 5-29. (1981) Zbl0459.06005MR0608645DOI10.1007/BF02483860
- Rachůnek, J., 10.1023/A:1021766309509, Czech. Math. J. 52 (2002), 255-273. (2002) Zbl1012.06012MR1905434DOI10.1023/A:1021766309509
- Rachůnek, J., Šalounová, D., 10.2478/s12175-007-0026-3, Math. Slovaca 57 (2007), 321-332. (2007) MR2357828DOI10.2478/s12175-007-0026-3
- Rachůnek, J., Šalounová, D., 10.1007/s00500-006-0101-7, Soft Comput. 11 (2007), 565-571. (2007) Zbl1121.06013DOI10.1007/s00500-006-0101-7
- Rachůnek, J., Šalounová, D., Modal operators on bounded residuated l-monoids, Math. Bohem. 133 (2008), 299-311. (2008) Zbl1199.06043MR2494783
- Rachůnek, J., Slezák, V., Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures, Math. Slovaca 56 (2006), 223-233. (2006) Zbl1150.06015MR2229343
- Wraith, G. C., 10.1007/BFb0061296, Model Theor. Topoi, Collect. Lect. var. Auth., Lect. Notes Math. 445 (1975), 114-206. (1975) Zbl0323.18005MR0393179DOI10.1007/BFb0061296
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.