Monotone modal operators on bounded integral residuated lattices

Jiří Rachůnek; Zdeněk Svoboda

Mathematica Bohemica (2012)

  • Volume: 137, Issue: 3, page 333-345
  • ISSN: 0862-7959

Abstract

top
Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.

How to cite

top

Rachůnek, Jiří, and Svoboda, Zdeněk. "Monotone modal operators on bounded integral residuated lattices." Mathematica Bohemica 137.3 (2012): 333-345. <http://eudml.org/doc/246737>.

@article{Rachůnek2012,
abstract = {Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.},
author = {Rachůnek, Jiří, Svoboda, Zdeněk},
journal = {Mathematica Bohemica},
keywords = {residuated lattice; bounded integral residuated lattice; modal operator; closure operator; residuated lattice; bounded integral residuated lattice; modal operator; closure operator},
language = {eng},
number = {3},
pages = {333-345},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Monotone modal operators on bounded integral residuated lattices},
url = {http://eudml.org/doc/246737},
volume = {137},
year = {2012},
}

TY - JOUR
AU - Rachůnek, Jiří
AU - Svoboda, Zdeněk
TI - Monotone modal operators on bounded integral residuated lattices
JO - Mathematica Bohemica
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 137
IS - 3
SP - 333
EP - 345
AB - Bounded integral residuated lattices form a large class of algebras containing some classes of commutative and noncommutative algebras behind many-valued and fuzzy logics. In the paper, monotone modal operators (special cases of closure operators) are introduced and studied.
LA - eng
KW - residuated lattice; bounded integral residuated lattice; modal operator; closure operator; residuated lattice; bounded integral residuated lattice; modal operator; closure operator
UR - http://eudml.org/doc/246737
ER -

References

top
  1. Bahls, P., Cole, J., Galatos, N., Jipsen, P., Tsinakis, C., Cancellative residuated lattices, Algebra Univers. 50 (2003), 83-106. (2003) Zbl1092.06012MR2026830
  2. Balbes, R., Dwinger, P., Distributive Lattices, University Missouri Press, Columbia (1974). (1974) Zbl0321.06012MR0373985
  3. Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D., Algebraic Foundations of Many-Valued Reasoning, Kluwer, Dordrecht (2000). (2000) Zbl0937.06009
  4. Ciungu, L. C., Classes of residuated lattices, Annals of University of Craiova, Math. Comp. Sci. Ser. 33 (2006), 180-207. (2006) MR2359903
  5. DiNola, A., Georgescu, G., Iorgulesu, A., Psedo-BL algebras; Part I, Multiple Val. Logic 8 (2002), 673-714. (2002) MR1948853
  6. Dowker, C. H., Papert, D., Quotient Frames and Subspaces, Proc. London Math. Soc. 16 (1966), 275-296. (1966) Zbl0136.43405MR0202648
  7. Dvurečenskij, A., 10.1007/s00500-006-0078-2, Soft Comput. 11 (2007), 495-501. (2007) Zbl1122.06012DOI10.1007/s00500-006-0078-2
  8. Dvurečenskij, A., Rachůnek, J., On Riečan and Bosbach states for bounded Rl-monoids, Math. Slovaca 56 (2006), 487-500. (2006) MR2293582
  9. Dvurečenskij, A., Rachůnek, J., 10.1016/j.disc.2005.12.024, Discrete Math. 306 (2006), 1317-1326. (2006) MR2237716DOI10.1016/j.disc.2005.12.024
  10. Dvurečenskij, A., Rachůnek, J., 10.1007/s00233-005-0545-6, Semigroup Forum 72 (2006), 191-206. (2006) MR2216089DOI10.1007/s00233-005-0545-6
  11. Esteva, F., Godo, L., Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets Syst. 124 (2001), 271-288. (2001) Zbl0994.03017MR1860848
  12. Flondor, P., Georgescu, G., Iorgulescu, A., 10.1007/s005000100137, Soft Comput. 5 (2001), 355-371. (2001) Zbl0995.03048MR1948853DOI10.1007/s005000100137
  13. Freyd, P. J., 10.1017/S0004972700044828, Bull. Austral. Math. Soc. 7 (1972), 1-76. (1972) Zbl0252.18002MR0396714DOI10.1017/S0004972700044828
  14. Galatos, N., Jipsen, P., Kowalski, T., Ono, H., Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Elsevier, Amsterdam (2007). (2007) Zbl1171.03001MR2531579
  15. Georgescu, G., Iorgulescu, A., Pseudo- M V algebras, Multiple Val. Logic 6 (2001), 95-135. (2001) Zbl1014.06008MR1817439
  16. Hájek, P., Metamathematics of Fuzzy Logic, Kluwer, Dordrecht (1998). (1998) MR1900263
  17. Harlenderová, M., Rachůnek, J., Modal operators on M V -algebras, Math. Bohem. 131 (2006), 39-48. (2006) Zbl1112.06014MR2211002
  18. Jipsen, P., Tsinakis, C., A Survey of Residuated Lattices, Ordered Algebraic Structures, Kluwer, Dordrecht (2006), 19-56. (2006) MR2083033
  19. Kondo, M., 10.2478/s12175-010-0055-1, Math. Slovaca 61 (2011), 1-14. (2011) Zbl1265.03081MR2772354DOI10.2478/s12175-010-0055-1
  20. Lawvere, F. W., Quantifiers and Sheaves, Actes Congr. internat. Math. 1 (1971), 329-334. (1971) Zbl0261.18010MR0430021
  21. Lawvere, F. W., Toposes, Algebraic Geometry and Logic, Lecture Notes 274, Springer, Berlin (1972). (1972) Zbl0233.00005MR0330254
  22. Macnab, D. S., 10.1007/BF02483860, Alg. Univ. 12 (1981), 5-29. (1981) Zbl0459.06005MR0608645DOI10.1007/BF02483860
  23. Rachůnek, J., 10.1023/A:1021766309509, Czech. Math. J. 52 (2002), 255-273. (2002) Zbl1012.06012MR1905434DOI10.1023/A:1021766309509
  24. Rachůnek, J., Šalounová, D., 10.2478/s12175-007-0026-3, Math. Slovaca 57 (2007), 321-332. (2007) MR2357828DOI10.2478/s12175-007-0026-3
  25. Rachůnek, J., Šalounová, D., 10.1007/s00500-006-0101-7, Soft Comput. 11 (2007), 565-571. (2007) Zbl1121.06013DOI10.1007/s00500-006-0101-7
  26. Rachůnek, J., Šalounová, D., Modal operators on bounded residuated l-monoids, Math. Bohem. 133 (2008), 299-311. (2008) Zbl1199.06043MR2494783
  27. Rachůnek, J., Slezák, V., Bounded dually residuated lattice ordered monoids as a generalization of fuzzy structures, Math. Slovaca 56 (2006), 223-233. (2006) Zbl1150.06015MR2229343
  28. Wraith, G. C., 10.1007/BFb0061296, Model Theor. Topoi, Collect. Lect. var. Auth., Lect. Notes Math. 445 (1975), 114-206. (1975) Zbl0323.18005MR0393179DOI10.1007/BFb0061296

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.