Modal operators on bounded commutative residuated -monoids

Jiří Rachůnek; Dana Šalounová

Mathematica Slovaca (2007)

  • Volume: 57, Issue: 4, page [321]-332
  • ISSN: 0232-0525

How to cite

top

Rachůnek, Jiří, and Šalounová, Dana. "Modal operators on bounded commutative residuated $\ell $-monoids." Mathematica Slovaca 57.4 (2007): [321]-332. <http://eudml.org/doc/34650>.

@article{Rachůnek2007,
author = {Rachůnek, Jiří, Šalounová, Dana},
journal = {Mathematica Slovaca},
keywords = {residuated -monoid; residuated lattice; BL-algebra; MV-algebra},
language = {eng},
number = {4},
pages = {[321]-332},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Modal operators on bounded commutative residuated $\ell $-monoids},
url = {http://eudml.org/doc/34650},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Rachůnek, Jiří
AU - Šalounová, Dana
TI - Modal operators on bounded commutative residuated $\ell $-monoids
JO - Mathematica Slovaca
PY - 2007
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 57
IS - 4
SP - [321]
EP - 332
LA - eng
KW - residuated -monoid; residuated lattice; BL-algebra; MV-algebra
UR - http://eudml.org/doc/34650
ER -

References

top
  1. BALBES R.-DWINGER R., Distributive Lattices, Univ. Missouri Press, Columbia, 1974. (1974) Zbl0321.06012MR0373985
  2. BLOUNT K.-TSINAKIS C., The structure of residuated lattices, Intеrnat. J. Algеbra Comput. 13 (2003), 437-461. Zbl1048.06010MR2022118
  3. CIGNOLI R. L. O.-D'OТТAVIANO I. M. L.-MUNDICI D., Algebraic Foundation of Many-valued Reasoning, Kluwеr Acad. Publ., Dordrecht-Boston-London, 2000. MR1786097
  4. DVUREČENSKIJ A.-RACHŮNEK J., Probabilistic averaging in bounded commutative residuated -monoids, Discrete Math. 306 (2006), 1317-1326 Zbl1105.06011MR2237716
  5. GALAТOS M.- ТSINAKIS C., Generalized MV-algebras, J. Algеbra 283 (2005), 254-291. MR2102083
  6. HÁJEK P., Metamathematics of Fuzzy Logic, Kluwer, Amsterdam, 1998. (1998) Zbl0937.03030MR1900263
  7. HARLENDEROVÁ M.-RACHŮNEK J., Modal operators on MV-algebras, Math. Bohem. 131 (2006), 39-48. Zbl1112.06014MR2211002
  8. JIPSEN P.-ТSINAKIS C., A survey of residuated lattices, In: Ordеrеd Algеbraic Structurеs (J. Martinеz, еd.), Kluwеr Acad. Publ., Dordrеcht, 2002, pp. 19-56. Zbl1070.06005MR2083033
  9. KÜHR J., Dually Residuated Lattice-Ordered Monoids, Ph.D. Тhеsis, Palacký Univ. Olomouc, 2003. Zbl1141.06014
  10. MACNAB D. S., Modal operators on Heyting algebras, Algebra Universalis 12 (1981), 5-29. (1981) Zbl0459.06005MR0608645
  11. RACHŮNEK J., D R -semigroups and M V -algebras, Czechoslovak Math. J. 48 (1998), 365-372. (1998) MR1624268
  12. RACHŮNEK J., [unknown], Math. Bohem. 123 (1998), 437-441. (1998) MR1667115
  13. RACHŮNEK J., A duality between algebras of basic logic and bounded representable D R -monoids, Math. Bohem. 126 (2001), 561-569. MR1970259
  14. RACHŮNEK J.-ŠALOUNOVÁ D., Local bounded commutative residuated t-monoids, Czechoslovak Math. J. 57 (2007), 395-406 MR2309973
  15. RACHŮNEK J.- SLEZÁK V., Negation in bounded commutative DRl-monoids, Czechoslovak Math. J. 56 (2006), 755-763 MR2291772
  16. SWAMY K. L. N., Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105-114. (1965) Zbl0138.02104MR0183797

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.