Essential norm of the difference of composition operators on Bloch space

Ke-Ben Yang; Ze-Hua Zhou

Czechoslovak Mathematical Journal (2010)

  • Volume: 60, Issue: 4, page 1139-1152
  • ISSN: 0011-4642

Abstract

top
Let ϕ and ψ be holomorphic self-maps of the unit disk, and denote by C ϕ , C ψ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators C ϕ - C ψ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.

How to cite

top

Yang, Ke-Ben, and Zhou, Ze-Hua. "Essential norm of the difference of composition operators on Bloch space." Czechoslovak Mathematical Journal 60.4 (2010): 1139-1152. <http://eudml.org/doc/196687>.

@article{Yang2010,
abstract = {Let $\varphi $ and $\psi $ be holomorphic self-maps of the unit disk, and denote by $C_\varphi $, $C_\psi $ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators $C_\varphi -C_\psi $ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.},
author = {Yang, Ke-Ben, Zhou, Ze-Hua},
journal = {Czechoslovak Mathematical Journal},
keywords = { Bloch space; composition operator; essential norm; difference; compactness; Bloch space; composition operator; essential norm; difference; compactness},
language = {eng},
number = {4},
pages = {1139-1152},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Essential norm of the difference of composition operators on Bloch space},
url = {http://eudml.org/doc/196687},
volume = {60},
year = {2010},
}

TY - JOUR
AU - Yang, Ke-Ben
AU - Zhou, Ze-Hua
TI - Essential norm of the difference of composition operators on Bloch space
JO - Czechoslovak Mathematical Journal
PY - 2010
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 1139
EP - 1152
AB - Let $\varphi $ and $\psi $ be holomorphic self-maps of the unit disk, and denote by $C_\varphi $, $C_\psi $ the induced composition operators. This paper gives some simple estimates of the essential norm for the difference of composition operators $C_\varphi -C_\psi $ from Bloch spaces to Bloch spaces in the unit disk. Compactness of the difference is also characterized.
LA - eng
KW - Bloch space; composition operator; essential norm; difference; compactness; Bloch space; composition operator; essential norm; difference; compactness
UR - http://eudml.org/doc/196687
ER -

References

top
  1. Aron, R., Galindo, P., Lindsröm, M., 10.1007/BF02789591, Int. Equ. Oper. Theory 45 (2003), 1-14. (2003) MR1952340DOI10.1007/BF02789591
  2. Bonet, J., Lindström, M., Wolf, E., 10.1017/S144678870800013X, J. Australian Math. Soc. 84 (2008), 9-20. (2008) MR2469264DOI10.1017/S144678870800013X
  3. Cowen, C. C., MacCluer, B. D., Composition operators on spaces of analytic functions, CRC Press, Boca Raton (1995). (1995) Zbl0873.47017MR1397026
  4. Cowen, C., Gallardo-Gutiérrez, E., 10.1016/j.jfa.2006.04.031, J. Funct. Anal. 238 (2006), 447-462. (2006) MR2253727DOI10.1016/j.jfa.2006.04.031
  5. Fang, Z. S., Zhou, Z. H., Differences of composition operators on the space of bounded analytic functions in the polydisc, Abstract Appl. Anal. 2008 (2008), 1-10. (2008) Zbl1160.32009MR2466222
  6. Fang, Z. S., Zhou, Z. H., 10.1017/S0004972709000045, Bull. Australian Math. Soc. 79 (2009), 465-471. (2009) Zbl1166.47032MR2505351DOI10.1017/S0004972709000045
  7. Gallardo-Gutiérrez, E. A., González, M. J., Nieminen, P. J., Saksman, E., 10.1016/j.aim.2008.06.005, Advances Math. 219 (2008), 986-1001. (2008) MR2442059DOI10.1016/j.aim.2008.06.005
  8. Gorkin, P., Mortini, R., Suarez, D., Homotopic composition operators on H ( B n ) , Function Spaces, Edwardsville, vol. IL, 177-188, 2002. Contemporary Mathematics, vol. 328, Americian Mathematical Society, Providence, RI, 2003, . MR1990399
  9. Hosokawa, T., Izuchi, K., Ohno, S., 10.1007/s00020-004-1337-1, Integral Equations Operator Theory 53 (2005), 509-526. (2005) MR2187435DOI10.1007/s00020-004-1337-1
  10. Hosokawa, T., Ohno, S., 10.1016/j.jmaa.2005.04.080, J. Math. Anal. Appl. 314 (2006), 736-748. (2006) Zbl1087.47029MR2185263DOI10.1016/j.jmaa.2005.04.080
  11. Hosokawa, T., Ohno, S., Differences of composition operators on the Bloch spaces, J. Operator Theory 57 (2007), 229-242. (2007) Zbl1174.47019MR2328996
  12. Kriete, T., Moorhouse, J., 10.1090/S0002-9947-07-04166-9, Transactions of the American Mathematical Society 359 (2007), 2915-2944. (2007) Zbl1115.47023MR2286063DOI10.1090/S0002-9947-07-04166-9
  13. Lindström, M., Wolf, E., 10.1007/s00605-007-0493-1, Monatshefte für Mathematik 153 (2008), 133-143. (2008) MR2373366DOI10.1007/s00605-007-0493-1
  14. MacCluer, B. D., 10.1007/BF01194560, Integral Equations Operator Theory 12 (1989), 725-738. (1989) Zbl0685.47027MR1009027DOI10.1007/BF01194560
  15. MacCluer, B., Ohno, S., Zhao, R., 10.1007/BF01198142, Int. Eq. Oper. Theory 40 (2001), 481-494. (2001) MR1839472DOI10.1007/BF01198142
  16. María, J., Vukoti'c, D., 10.1016/j.jfa.2006.04.024, J. Funct. Anal. 238 (2006), 298-312. (2006) MR2253017DOI10.1016/j.jfa.2006.04.024
  17. Montes-Rodríguez, A., 10.2140/pjm.1999.188.339, Pacific J. Math. 188 (1999), 339-351. (1999) MR1684196DOI10.2140/pjm.1999.188.339
  18. Moorhouse, J., 10.1016/j.jfa.2004.01.012, J. Funct. Anal. 219 (2005), 70-92. (2005) Zbl1087.47032MR2108359DOI10.1016/j.jfa.2004.01.012
  19. Nieminen, Pekka J., 10.1007/BF03321648, Comput. Methods Function Theory 7 (2007), 325-344. (2007) Zbl1146.47016MR2376675DOI10.1007/BF03321648
  20. Nieminen, P. J., Saksman, E., 10.1016/j.jmaa.2004.05.024, J. Math. Anal. Appl. 298 (2004), 501-522. (2004) Zbl1072.47021MR2086972DOI10.1016/j.jmaa.2004.05.024
  21. Ohno, S., Takagi, H., Some properties of weighted composition operators on algebras of analytic functions, J. Nonlin. Convex Anal. 2 (2001), 369-380. (2001) Zbl1006.47027MR1874125
  22. Shapiro, J. H., Composition Operators and Classical Function Theory, Springer Verlag, New York (1993). (1993) Zbl0791.30033MR1237406
  23. Shapiro, J. H., Sundberg, C., 10.2140/pjm.1990.145.117, Pacific J. Math. 145 (1990), 117-152. (1990) Zbl0732.30027MR1066401DOI10.2140/pjm.1990.145.117
  24. Toews, C., 10.1007/s00020-002-1180-1, Int. Equ. Oper. Theory 48 (2004), 265-280. (2004) MR2030531DOI10.1007/s00020-002-1180-1
  25. Wolf, E., 10.1007/s00025-007-0283-z, Results in Mathematics 51 (2008), 361-372. (2008) Zbl1154.47018MR2400173DOI10.1007/s00025-007-0283-z
  26. Zhou, Z. H., Chen, R. Y., On the composition operators on the Bloch space of several complex variables, Science in China (Series A) 48 (2005), 392-399. (2005) MR2156519
  27. Zhou, Z. H., Chen, R. Y., 10.1142/S0129167X08004984, Int. J. Math. 19 (2008), 899-926. (2008) Zbl1163.47021MR2446507DOI10.1142/S0129167X08004984
  28. Zhou, Z. H., Liu, Y., 10.1155/JIA/2006/90742, J. Inequal. Appl. 2006 (2006), 1-22. (2006) MR2270308DOI10.1155/JIA/2006/90742
  29. Zhou, Z. H., Shi, J. H., 10.1307/mmj/1028575740, Michigan Math. J. 50 (2002), 381-405. (2002) Zbl1044.47021MR1914071DOI10.1307/mmj/1028575740
  30. Zhou, Z. H., Shi, J. H., 10.1007/BF02878708, Science in China (Series A) 44 (2001), 286-291. (2001) Zbl1024.47010MR1828751DOI10.1007/BF02878708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.