Displaying similar documents to “On meager function spaces, network character and meager convergence in topological spaces”

Some observations on filters with properties defined by open covers

Rodrigo Hernández-Gutiérrez, Paul J. Szeptycki (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study the relation between the Hurewicz and Menger properties of filters considered topologically as subspaces of 𝒫 ( ω ) with the Cantor set topology.

The point of continuity property, neighbourhood assignments and filter convergences

Ahmed Bouziad (2012)

Fundamenta Mathematicae

Similarity:

We show that for some large classes of topological spaces X and any metric space (Z,d), the point of continuity property of any function f: X → (Z,d) is equivalent to the following condition: (*) For every ε > 0, there is a neighbourhood assignment ( V x ) x X of X such that d(f(x),f(y)) < ε whenever ( x , y ) V y × V x . We also give various descriptions of the filters ℱ on the integers ℕ for which (*) is satisfied by the ℱ-limit of any sequence of continuous functions from a topological space into a metric...

A semifilter approach to selection principles II: τ * -covers

Lubomyr Zdomsky (2006)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Developing the idea of assigning to a large cover of a topological space a corresponding semifilter, we show that every Menger topological space has the property fin ( 𝒪 , T * ) provided ( 𝔲 < 𝔤 ) , and every space with the property fin ( 𝒪 , T * ) is Hurewicz provided ( Depth + ( [ ω ] 0 ) 𝔟 ) . Combining this with the results proven in cited literature, we settle all questions whether (it is consistent that) the properties P and Q [do not] coincide, where P and Q run over fin ( 𝒪 , Γ ) , fin ( 𝒪 , T ) , fin ( 𝒪 , T * ) , fin ( 𝒪 , Ω ) , and fin ( 𝒪 , 𝒪 ) .

Guessing clubs in the generalized club filter

Bernhard König, Paul Larson, Yasuo Yoshinobu (2007)

Fundamenta Mathematicae

Similarity:

We present principles for guessing clubs in the generalized club filter on κ λ . These principles are shown to be weaker than classical diamond principles but often serve as sufficient substitutes. One application is a new construction of a λ⁺-Suslin-tree using assumptions different from previous constructions. The other application partly solves open problems regarding the cofinality of reflection points for stationary subsets of [ λ ] .

Products of topological spaces and families of filters

Paolo Lipparini (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that, under suitably general formulations, covering properties, accumulation properties and filter convergence are all equivalent notions. This general correspondence is exemplified in the study of products. We prove that a product is Lindelöf if and only if all subproducts by ω 1 factors are Lindelöf. Parallel results are obtained for final ω n -compactness, [ λ , μ ] -compactness, the Menger and the Rothberger properties.

Filter descriptive classes of Borel functions

Gabriel Debs, Jean Saint Raymond (2009)

Fundamenta Mathematicae

Similarity:

We first prove that given any analytic filter ℱ on ω the set of all functions f on 2 ω which can be represented as the pointwise limit relative to ℱ of some sequence ( f ) n ω of continuous functions ( f = l i m f ), is exactly the set of all Borel functions of class ξ for some countable ordinal ξ that we call the rank of ℱ. We discuss several structural properties of this rank. For example, we prove that any free Π⁰₄ filter is of rank 1.