On a phase-field model with a logarithmic nonlinearity
Applications of Mathematics (2012)
- Volume: 57, Issue: 3, page 215-229
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topMiranville, Alain. "On a phase-field model with a logarithmic nonlinearity." Applications of Mathematics 57.3 (2012): 215-229. <http://eudml.org/doc/247184>.
@article{Miranville2012,
abstract = {Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.},
author = {Miranville, Alain},
journal = {Applications of Mathematics},
keywords = {phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential; phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential},
language = {eng},
number = {3},
pages = {215-229},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a phase-field model with a logarithmic nonlinearity},
url = {http://eudml.org/doc/247184},
volume = {57},
year = {2012},
}
TY - JOUR
AU - Miranville, Alain
TI - On a phase-field model with a logarithmic nonlinearity
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 215
EP - 229
AB - Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.
LA - eng
KW - phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential; phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential
UR - http://eudml.org/doc/247184
ER -
References
top- Aizicovici, S., Feireisl, E., Issard-Roch, F., 10.1002/mma.215, Math. Methods Appl. Sci. 24 (2001), 277-287. (2001) Zbl0984.35026MR1818896DOI10.1002/mma.215
- Brochet, D., Hilhorst, D., Chen, X., 10.1080/00036819108840173, Appl. Anal. 49 (1993), 197-212. (1993) MR1289743DOI10.1080/00036819108840173
- Brokate, M., Sprekels, J., Hysteresis and Phase Transitions, Springer New York (1996). (1996) Zbl0951.74002MR1411908
- Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 (1986), 205-245. (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
- Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 2 (1958), 258-267. (1958) DOI10.1063/1.1744102
- Cherfils, L., Gatti, S., Miranville, A., 10.1016/j.jmaa.2008.01.077, J. Math. Anal. Appl. 343 (2008), 557-566 Corrigendum, J. Math. Anal. Appl. 348 (2008), 1029-1030. (2008) Zbl1160.35433MR2412150DOI10.1016/j.jmaa.2008.01.077
- Cherfils, L., Miranville, A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 17 (2007), 107-129. (2007) Zbl1145.35042MR2337372
- Cherfils, L., Miranville, A., 10.1007/s10492-009-0008-6, Appl. Math. 54 (2009), 89-115. (2009) Zbl1212.35012MR2491850DOI10.1007/s10492-009-0008-6
- Chill, R., Fašangovà, E., Prüss, J., 10.1002/mana.200410431, Math. Nachr. 279 (2006), 1448-1462. (2006) MR2269249DOI10.1002/mana.200410431
- Christov, C. I., Jordan, P. M., 10.1103/PhysRevLett.94.154301, Phys. Rev. Lett. 94 (2005), 154301. (2005) DOI10.1103/PhysRevLett.94.154301
- Elliott, C. M., Zheng, S., Global existence and stability of solutions to the phase field equations. In: Free boundary value problems (Proc. Conf. Oberwolfach, 1989), Int. Ser. Numer. Math. 95 (1990), 46-58. (1990) MR1111021
- Gajewski, H., Zacharias, K., 10.1002/mana.19981950106, Math. Nachr. 195 (1998), 77-114. (1998) Zbl0918.35064MR1654677DOI10.1002/mana.19981950106
- Gal, C. G., Grasselli, M., 10.3934/dcds.2008.22.1009, Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. (2008) Zbl1160.35353MR2434980DOI10.3934/dcds.2008.22.1009
- Gatti, S., Miranville, A., 10.1201/9781420011135.ch9, In: Differential Equations. Inverse and Direct Problems. Proc. Workshop ``Evolution Equations: Inverse and Direct Problems'', Cortona, June 21-25, 2004. A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini, A. Lorenzi CRC Press Boca Raton (2006), 149-170. (2006) Zbl1123.35310MR2275977DOI10.1201/9781420011135.ch9
- Grasselli, M., Miranville, A., Pata, V., Zelik, S., 10.1002/mana.200510560, Math. Nachr. 280 (2007), 1475-1509. (2007) Zbl1133.35017MR2354975DOI10.1002/mana.200510560
- Grasselli, M., Miranville, A., Schimperna, G., 10.3934/dcds.2010.28.67, Discr. Contin. Dyn. Syst. 28 (2010), 67-98. (2010) Zbl1194.35074MR2629473DOI10.3934/dcds.2010.28.67
- Grasselli, M., Petzeltová, H., Schimperna, G., 10.4171/ZAA/1277, Z. Anal. Anwend. 25 (2006), 51-72. (2006) Zbl1128.35021MR2216881DOI10.4171/ZAA/1277
- Grasselli, M., Pata, V., 10.1007/s00028-003-0074-2, J. Evol. Equ. 4 (2004), 27-51. (2004) Zbl1063.35038MR2047305DOI10.1007/s00028-003-0074-2
- Green, A. E., Naghdi, P. M., 10.1098/rspa.1991.0012, Proc. R. Soc. Lond. A 432 (1991), 171-194. (1991) Zbl0726.73004MR1116956DOI10.1098/rspa.1991.0012
- Jiang, J., 10.1016/j.jmaa.2007.09.041, J. Math. Anal. Appl. 341 (2008), 149-169. (2008) Zbl1139.35019MR2394072DOI10.1016/j.jmaa.2007.09.041
- Jiang, J., 10.1002/mma.1092, Math. Methods Appl. Sci. 32 (2009), 1156-1182. (2009) Zbl1180.35107MR2523568DOI10.1002/mma.1092
- Kufner, A., John, O., Fučík, S., Function Spaces, Noordhoff International Publishing/Academia Leyden/Prague (1977). (1977) MR0482102
- Miranville, A., Quintanilla, R., 10.1016/j.na.2009.01.061, Nonlinear Anal., Theorey Methods Appl. 71 (2009), 2278-2290. (2009) Zbl1167.35304MR2524435DOI10.1016/j.na.2009.01.061
- Miranville, A., Quintanilla, R., 10.1080/00036810903042182, Appl. Anal. 88 (2009), 877-894. (2009) Zbl1178.35194MR2548940DOI10.1080/00036810903042182
- Miranville, A., Quintanilla, R., 10.1007/s00245-010-9114-9, Appl. Math. Optim. 63 (2011), 133-150. (2011) Zbl1213.35111MR2746733DOI10.1007/s00245-010-9114-9
- Miranville, A., Quintanilla, R., 10.1016/j.aml.2011.01.016, Appl. Math. Lett. 24 (2011), 1003-1008. (2011) Zbl1213.35187MR2776176DOI10.1016/j.aml.2011.01.016
- Miranville, A., Zelik, S., Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differ. Equ. (2002), 1-28 Paper No. 63, electronic only. (2002) Zbl1004.35024MR1911930
- Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 (2004), 545-582. (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
- Miranville, A., Zelik, S., 10.3934/dcds.2010.28.275, Discr. Contin. Dyn. Syst. 28 (2010), 275-310. (2010) Zbl1203.35046MR2629483DOI10.3934/dcds.2010.28.275
- Choudhuri, S. K. Roy, 10.1080/01495730601130919, J. Thermal Stresses 30 (2007), 231-238. (2007) DOI10.1080/01495730601130919
- Zhang, Z., 10.3934/cpaa.2005.4.683, Commun. Pure Appl. Anal. 4 (2005), 683-693. (2005) Zbl1082.35033MR2167193DOI10.3934/cpaa.2005.4.683
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.