On a phase-field model with a logarithmic nonlinearity

Alain Miranville

Applications of Mathematics (2012)

  • Volume: 57, Issue: 3, page 215-229
  • ISSN: 0862-7940

Abstract

top
Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.

How to cite

top

Miranville, Alain. "On a phase-field model with a logarithmic nonlinearity." Applications of Mathematics 57.3 (2012): 215-229. <http://eudml.org/doc/247184>.

@article{Miranville2012,
abstract = {Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.},
author = {Miranville, Alain},
journal = {Applications of Mathematics},
keywords = {phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential; phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential},
language = {eng},
number = {3},
pages = {215-229},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a phase-field model with a logarithmic nonlinearity},
url = {http://eudml.org/doc/247184},
volume = {57},
year = {2012},
}

TY - JOUR
AU - Miranville, Alain
TI - On a phase-field model with a logarithmic nonlinearity
JO - Applications of Mathematics
PY - 2012
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 215
EP - 229
AB - Our aim in this paper is to study the existence of solutions to a phase-field system based on the Maxwell-Cattaneo heat conduction law, with a logarithmic nonlinearity. In particular, we prove, in one and two space dimensions, the existence of a solution which is separated from the singularities of the nonlinear term.
LA - eng
KW - phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential; phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential
UR - http://eudml.org/doc/247184
ER -

References

top
  1. Aizicovici, S., Feireisl, E., Issard-Roch, F., 10.1002/mma.215, Math. Methods Appl. Sci. 24 (2001), 277-287. (2001) Zbl0984.35026MR1818896DOI10.1002/mma.215
  2. Brochet, D., Hilhorst, D., Chen, X., 10.1080/00036819108840173, Appl. Anal. 49 (1993), 197-212. (1993) MR1289743DOI10.1080/00036819108840173
  3. Brokate, M., Sprekels, J., Hysteresis and Phase Transitions, Springer New York (1996). (1996) Zbl0951.74002MR1411908
  4. Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 (1986), 205-245. (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
  5. Cahn, J. W., Hilliard, J. E., 10.1063/1.1744102, J. Chem. Phys. 2 (1958), 258-267. (1958) DOI10.1063/1.1744102
  6. Cherfils, L., Gatti, S., Miranville, A., 10.1016/j.jmaa.2008.01.077, J. Math. Anal. Appl. 343 (2008), 557-566 Corrigendum, J. Math. Anal. Appl. 348 (2008), 1029-1030. (2008) Zbl1160.35433MR2412150DOI10.1016/j.jmaa.2008.01.077
  7. Cherfils, L., Miranville, A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 17 (2007), 107-129. (2007) Zbl1145.35042MR2337372
  8. Cherfils, L., Miranville, A., 10.1007/s10492-009-0008-6, Appl. Math. 54 (2009), 89-115. (2009) Zbl1212.35012MR2491850DOI10.1007/s10492-009-0008-6
  9. Chill, R., Fašangovà, E., Prüss, J., 10.1002/mana.200410431, Math. Nachr. 279 (2006), 1448-1462. (2006) MR2269249DOI10.1002/mana.200410431
  10. Christov, C. I., Jordan, P. M., 10.1103/PhysRevLett.94.154301, Phys. Rev. Lett. 94 (2005), 154301. (2005) DOI10.1103/PhysRevLett.94.154301
  11. Elliott, C. M., Zheng, S., Global existence and stability of solutions to the phase field equations. In: Free boundary value problems (Proc. Conf. Oberwolfach, 1989), Int. Ser. Numer. Math. 95 (1990), 46-58. (1990) MR1111021
  12. Gajewski, H., Zacharias, K., 10.1002/mana.19981950106, Math. Nachr. 195 (1998), 77-114. (1998) Zbl0918.35064MR1654677DOI10.1002/mana.19981950106
  13. Gal, C. G., Grasselli, M., 10.3934/dcds.2008.22.1009, Discrete Contin. Dyn. Syst. 22 (2008), 1009-1040. (2008) Zbl1160.35353MR2434980DOI10.3934/dcds.2008.22.1009
  14. Gatti, S., Miranville, A., 10.1201/9781420011135.ch9, In: Differential Equations. Inverse and Direct Problems. Proc. Workshop ``Evolution Equations: Inverse and Direct Problems'', Cortona, June 21-25, 2004. A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 A. Favini, A. Lorenzi CRC Press Boca Raton (2006), 149-170. (2006) Zbl1123.35310MR2275977DOI10.1201/9781420011135.ch9
  15. Grasselli, M., Miranville, A., Pata, V., Zelik, S., 10.1002/mana.200510560, Math. Nachr. 280 (2007), 1475-1509. (2007) Zbl1133.35017MR2354975DOI10.1002/mana.200510560
  16. Grasselli, M., Miranville, A., Schimperna, G., 10.3934/dcds.2010.28.67, Discr. Contin. Dyn. Syst. 28 (2010), 67-98. (2010) Zbl1194.35074MR2629473DOI10.3934/dcds.2010.28.67
  17. Grasselli, M., Petzeltová, H., Schimperna, G., 10.4171/ZAA/1277, Z. Anal. Anwend. 25 (2006), 51-72. (2006) Zbl1128.35021MR2216881DOI10.4171/ZAA/1277
  18. Grasselli, M., Pata, V., 10.1007/s00028-003-0074-2, J. Evol. Equ. 4 (2004), 27-51. (2004) Zbl1063.35038MR2047305DOI10.1007/s00028-003-0074-2
  19. Green, A. E., Naghdi, P. M., 10.1098/rspa.1991.0012, Proc. R. Soc. Lond. A 432 (1991), 171-194. (1991) Zbl0726.73004MR1116956DOI10.1098/rspa.1991.0012
  20. Jiang, J., 10.1016/j.jmaa.2007.09.041, J. Math. Anal. Appl. 341 (2008), 149-169. (2008) Zbl1139.35019MR2394072DOI10.1016/j.jmaa.2007.09.041
  21. Jiang, J., 10.1002/mma.1092, Math. Methods Appl. Sci. 32 (2009), 1156-1182. (2009) Zbl1180.35107MR2523568DOI10.1002/mma.1092
  22. Kufner, A., John, O., Fučík, S., Function Spaces, Noordhoff International Publishing/Academia Leyden/Prague (1977). (1977) MR0482102
  23. Miranville, A., Quintanilla, R., 10.1016/j.na.2009.01.061, Nonlinear Anal., Theorey Methods Appl. 71 (2009), 2278-2290. (2009) Zbl1167.35304MR2524435DOI10.1016/j.na.2009.01.061
  24. Miranville, A., Quintanilla, R., 10.1080/00036810903042182, Appl. Anal. 88 (2009), 877-894. (2009) Zbl1178.35194MR2548940DOI10.1080/00036810903042182
  25. Miranville, A., Quintanilla, R., 10.1007/s00245-010-9114-9, Appl. Math. Optim. 63 (2011), 133-150. (2011) Zbl1213.35111MR2746733DOI10.1007/s00245-010-9114-9
  26. Miranville, A., Quintanilla, R., 10.1016/j.aml.2011.01.016, Appl. Math. Lett. 24 (2011), 1003-1008. (2011) Zbl1213.35187MR2776176DOI10.1016/j.aml.2011.01.016
  27. Miranville, A., Zelik, S., Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Differ. Equ. (2002), 1-28 Paper No. 63, electronic only. (2002) Zbl1004.35024MR1911930
  28. Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 (2004), 545-582. (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
  29. Miranville, A., Zelik, S., 10.3934/dcds.2010.28.275, Discr. Contin. Dyn. Syst. 28 (2010), 275-310. (2010) Zbl1203.35046MR2629483DOI10.3934/dcds.2010.28.275
  30. Choudhuri, S. K. Roy, 10.1080/01495730601130919, J. Thermal Stresses 30 (2007), 231-238. (2007) DOI10.1080/01495730601130919
  31. Zhang, Z., 10.3934/cpaa.2005.4.683, Commun. Pure Appl. Anal. 4 (2005), 683-693. (2005) Zbl1082.35033MR2167193DOI10.3934/cpaa.2005.4.683

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.