On a Caginalp phase-field system with a logarithmic nonlinearity

Charbel Wehbe

Applications of Mathematics (2015)

  • Volume: 60, Issue: 4, page 355-382
  • ISSN: 0862-7940

Abstract

top
We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.

How to cite

top

Wehbe, Charbel. "On a Caginalp phase-field system with a logarithmic nonlinearity." Applications of Mathematics 60.4 (2015): 355-382. <http://eudml.org/doc/271609>.

@article{Wehbe2015,
abstract = {We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.},
author = {Wehbe, Charbel},
journal = {Applications of Mathematics},
keywords = {Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential; Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential},
language = {eng},
number = {4},
pages = {355-382},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a Caginalp phase-field system with a logarithmic nonlinearity},
url = {http://eudml.org/doc/271609},
volume = {60},
year = {2015},
}

TY - JOUR
AU - Wehbe, Charbel
TI - On a Caginalp phase-field system with a logarithmic nonlinearity
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 355
EP - 382
AB - We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.
LA - eng
KW - Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential; Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential
UR - http://eudml.org/doc/271609
ER -

References

top
  1. Babin, A., Nicolaenko, B., 10.1007/BF02218725, J. Dyn. Differ. Equations 7 567-590 (1995). (1995) MR1362671DOI10.1007/BF02218725
  2. Brochet, D., Hilhorst, D., 10.1016/0893-9659(91)90076-8, Appl. Math. Lett. 4 59-62 (1991). (1991) Zbl0773.35028MR1136614DOI10.1016/0893-9659(91)90076-8
  3. Brochet, D., Hilhorst, D., Chen, X., 10.1080/00036819108840173, Appl. Anal. 49 (1993), 197-212. (1993) Zbl0790.35052MR1289743DOI10.1080/00036819108840173
  4. Brochet, D., Hilhorst, D., Novick-Cohen, A., 10.1016/0893-9659(94)90118-X, Appl. Math. Lett. 7 83-87 (1994). (1994) Zbl0803.35076MR1350381DOI10.1016/0893-9659(94)90118-X
  5. Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 205-245 (1986). (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
  6. Caginalp, G., 10.1016/0003-4916(86)90022-9, Ann. Phys. 172 136-155 (1986). (1986) Zbl0639.58038MR0912765DOI10.1016/0003-4916(86)90022-9
  7. Cherfils, L., Miranville, A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 17 107-129 (2007). (2007) Zbl1145.35042MR2337372
  8. Conti, M., Gatti, S., Miranville, A., 10.3934/dcdss.2012.5.485, Discrete Contin. Dyn. Syst., Ser. S 5 485-505 (2012). (2012) Zbl1244.35067MR2861821DOI10.3934/dcdss.2012.5.485
  9. Fabrie, P., Galusinski, C., 10.3233/ASY-1996-12403, Asymptotic Anal. 12 329-354 (1996). (1996) MR1402980DOI10.3233/ASY-1996-12403
  10. Gajewski, H., Zacharias, K., 10.1002/mana.19981950106, Math. Nachr. 195 (1998), 77-114. (1998) Zbl0918.35064MR1654677DOI10.1002/mana.19981950106
  11. Grasselli, M., Miranville, A., Pata, V., Zelik, S., 10.1002/mana.200510560, Math. Nachr. 280 1475-1509 (2007). (2007) Zbl1133.35017MR2354975DOI10.1002/mana.200510560
  12. Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden Academia, Prague (1977). (1977) MR0482102
  13. Landau, L. D., Lifschitz, E. M., Course of Theoretical Physics. Vol. 1, Mechanics. Akademie Berlin German (1981). (1981) 
  14. Miranville, A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci., Paris, Sér. I, Math. 328 145-150 (1999), English. Abridged French version. (1999) Zbl1141.35340MR1669003
  15. Miranville, A., 10.1007/s10492-012-0014-y, Appl. Math., Praha 57 (2012), 215-229. (2012) Zbl1265.35139MR2984601DOI10.1007/s10492-012-0014-y
  16. Miranville, A., 10.3934/dcdss.2014.7.271, Discrete Contin. Dyn. Syst., Ser. S 7 271-306 (2014). (2014) Zbl1275.35048MR3109473DOI10.3934/dcdss.2014.7.271
  17. Miranville, A., Quintanilla, R., 10.1016/j.na.2009.01.061, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 2278-2290 (2009). (2009) Zbl1167.35304MR2524435DOI10.1016/j.na.2009.01.061
  18. Miranville, A., Quintanilla, R., 10.1080/00036810903042182, Appl. Anal. 88 877-894 (2009). (2009) Zbl1178.35194MR2548940DOI10.1080/00036810903042182
  19. Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 (2004), 545-582. (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
  20. Miranville, A., Zelik, S., Attractors for dissipative partial differential equations in bounded and unbounded domains, C. M. Dafermos et al. Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland Amsterdam 103-200 (2008). (2008) Zbl1221.37158MR2508165
  21. Temam, R., 10.1007/978-1-4612-0645-3, Applied Mathematical Sciences 68 Springer, New York (1997). (1997) Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.