On a Caginalp phase-field system with a logarithmic nonlinearity
Applications of Mathematics (2015)
- Volume: 60, Issue: 4, page 355-382
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWehbe, Charbel. "On a Caginalp phase-field system with a logarithmic nonlinearity." Applications of Mathematics 60.4 (2015): 355-382. <http://eudml.org/doc/271609>.
@article{Wehbe2015,
abstract = {We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.},
author = {Wehbe, Charbel},
journal = {Applications of Mathematics},
keywords = {Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential; Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential},
language = {eng},
number = {4},
pages = {355-382},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a Caginalp phase-field system with a logarithmic nonlinearity},
url = {http://eudml.org/doc/271609},
volume = {60},
year = {2015},
}
TY - JOUR
AU - Wehbe, Charbel
TI - On a Caginalp phase-field system with a logarithmic nonlinearity
JO - Applications of Mathematics
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 60
IS - 4
SP - 355
EP - 382
AB - We consider a phase field system based on the Maxwell Cattaneo heat conduction law, with a logarithmic nonlinearity, associated with Dirichlet boundary conditions. In particular, we prove, in one and two space dimensions, the existence of a solution which is strictly separated from the singularities of the nonlinear term and that the problem possesses a finite-dimensional global attractor in terms of exponential attractors.
LA - eng
KW - Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential; Caginalp phase-field system; Dirichlet boundary conditions; well-posedness; long time behavior of solution; global attractor; exponential attractor; Maxwell-Cattaneo law; logarithmic potential
UR - http://eudml.org/doc/271609
ER -
References
top- Babin, A., Nicolaenko, B., 10.1007/BF02218725, J. Dyn. Differ. Equations 7 567-590 (1995). (1995) MR1362671DOI10.1007/BF02218725
- Brochet, D., Hilhorst, D., 10.1016/0893-9659(91)90076-8, Appl. Math. Lett. 4 59-62 (1991). (1991) Zbl0773.35028MR1136614DOI10.1016/0893-9659(91)90076-8
- Brochet, D., Hilhorst, D., Chen, X., 10.1080/00036819108840173, Appl. Anal. 49 (1993), 197-212. (1993) Zbl0790.35052MR1289743DOI10.1080/00036819108840173
- Brochet, D., Hilhorst, D., Novick-Cohen, A., 10.1016/0893-9659(94)90118-X, Appl. Math. Lett. 7 83-87 (1994). (1994) Zbl0803.35076MR1350381DOI10.1016/0893-9659(94)90118-X
- Caginalp, G., 10.1007/BF00254827, Arch. Ration. Mech. Anal. 92 205-245 (1986). (1986) Zbl0608.35080MR0816623DOI10.1007/BF00254827
- Caginalp, G., 10.1016/0003-4916(86)90022-9, Ann. Phys. 172 136-155 (1986). (1986) Zbl0639.58038MR0912765DOI10.1016/0003-4916(86)90022-9
- Cherfils, L., Miranville, A., Some results on the asymptotic behavior of the Caginalp system with singular potentials, Adv. Math. Sci. Appl. 17 107-129 (2007). (2007) Zbl1145.35042MR2337372
- Conti, M., Gatti, S., Miranville, A., 10.3934/dcdss.2012.5.485, Discrete Contin. Dyn. Syst., Ser. S 5 485-505 (2012). (2012) Zbl1244.35067MR2861821DOI10.3934/dcdss.2012.5.485
- Fabrie, P., Galusinski, C., 10.3233/ASY-1996-12403, Asymptotic Anal. 12 329-354 (1996). (1996) MR1402980DOI10.3233/ASY-1996-12403
- Gajewski, H., Zacharias, K., 10.1002/mana.19981950106, Math. Nachr. 195 (1998), 77-114. (1998) Zbl0918.35064MR1654677DOI10.1002/mana.19981950106
- Grasselli, M., Miranville, A., Pata, V., Zelik, S., 10.1002/mana.200510560, Math. Nachr. 280 1475-1509 (2007). (2007) Zbl1133.35017MR2354975DOI10.1002/mana.200510560
- Kufner, A., John, O., Fučík, S., Function Spaces, Monographs and Textsbooks on Mechanics of Solids and Fluids. Mechanics: Analysis. Noordhoff International Publishing, Leyden Academia, Prague (1977). (1977) MR0482102
- Landau, L. D., Lifschitz, E. M., Course of Theoretical Physics. Vol. 1, Mechanics. Akademie Berlin German (1981). (1981)
- Miranville, A., Exponential attractors for a class of evolution equations by a decomposition method, C. R. Acad. Sci., Paris, Sér. I, Math. 328 145-150 (1999), English. Abridged French version. (1999) Zbl1141.35340MR1669003
- Miranville, A., 10.1007/s10492-012-0014-y, Appl. Math., Praha 57 (2012), 215-229. (2012) Zbl1265.35139MR2984601DOI10.1007/s10492-012-0014-y
- Miranville, A., 10.3934/dcdss.2014.7.271, Discrete Contin. Dyn. Syst., Ser. S 7 271-306 (2014). (2014) Zbl1275.35048MR3109473DOI10.3934/dcdss.2014.7.271
- Miranville, A., Quintanilla, R., 10.1016/j.na.2009.01.061, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 2278-2290 (2009). (2009) Zbl1167.35304MR2524435DOI10.1016/j.na.2009.01.061
- Miranville, A., Quintanilla, R., 10.1080/00036810903042182, Appl. Anal. 88 877-894 (2009). (2009) Zbl1178.35194MR2548940DOI10.1080/00036810903042182
- Miranville, A., Zelik, S., 10.1002/mma.464, Math. Methods Appl. Sci. 27 (2004), 545-582. (2004) Zbl1050.35113MR2041814DOI10.1002/mma.464
- Miranville, A., Zelik, S., Attractors for dissipative partial differential equations in bounded and unbounded domains, C. M. Dafermos et al. Handbook of Differential Equations: Evolutionary Equations. Vol. IV Elsevier/North-Holland Amsterdam 103-200 (2008). (2008) Zbl1221.37158MR2508165
- Temam, R., 10.1007/978-1-4612-0645-3, Applied Mathematical Sciences 68 Springer, New York (1997). (1997) Zbl0871.35001MR1441312DOI10.1007/978-1-4612-0645-3
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.