On the diophantine equation
Journal de théorie des nombres de Bordeaux (2003)
- Volume: 15, Issue: 3, page 839-846
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topSiksek, Samir. "On the diophantine equation $x^2 = y^p + 2^k z^p$." Journal de théorie des nombres de Bordeaux 15.3 (2003): 839-846. <http://eudml.org/doc/249098>.
@article{Siksek2003,
abstract = {We attack the equation of the title using a Frey curve, Ribet’s level-lowering theorem and a method due to Darmon and Merel. We are able to determine all the solutions in pairwise coprime integers $x, y, z$ if $p \ge 7$ is prime and $k\ge 2$. From this we deduce some results about special cases of this equation that have been studied in the literature. In particular, we are able to combine our result with previous results of Arif and Abu Muriefah, and those of Cohn to obtain a complete solution for the equation $x^2 + \,2^k = y^n$ for $n \ge 3$.},
author = {Siksek, Samir},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {exponential Diophantine equations; elliptic curves},
language = {eng},
number = {3},
pages = {839-846},
publisher = {Université Bordeaux I},
title = {On the diophantine equation $x^2 = y^p + 2^k z^p$},
url = {http://eudml.org/doc/249098},
volume = {15},
year = {2003},
}
TY - JOUR
AU - Siksek, Samir
TI - On the diophantine equation $x^2 = y^p + 2^k z^p$
JO - Journal de théorie des nombres de Bordeaux
PY - 2003
PB - Université Bordeaux I
VL - 15
IS - 3
SP - 839
EP - 846
AB - We attack the equation of the title using a Frey curve, Ribet’s level-lowering theorem and a method due to Darmon and Merel. We are able to determine all the solutions in pairwise coprime integers $x, y, z$ if $p \ge 7$ is prime and $k\ge 2$. From this we deduce some results about special cases of this equation that have been studied in the literature. In particular, we are able to combine our result with previous results of Arif and Abu Muriefah, and those of Cohn to obtain a complete solution for the equation $x^2 + \,2^k = y^n$ for $n \ge 3$.
LA - eng
KW - exponential Diophantine equations; elliptic curves
UR - http://eudml.org/doc/249098
ER -
References
top- [1] S.A. Arif, F.S. Abu Muriefah, On the diophantine equation x2 + 2k = yn. Internat. J. Math. & Math. Sci.20 no. 2 (1997), 299-304. Zbl0881.11038MR1444731
- [2] C. Breuil, B. Conrad, F. Diamond, R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises. J. Amer. Math. Soc.14 (2001), 843-939. Zbl0982.11033MR1839918
- [3] Y. Bugeaud, On the diophantine equation x2 - 2m = ±yn. Proc. Amer. Math. Soc.125 (1997), 3203-3208. Zbl0893.11012MR1422850
- [4] J.E. Cremona, Algorithms for modular elliptic curves (second edition). Cambridge University Press, 1996. Zbl0872.14041MR1628193
- [5] J.H.E. Cohn, The diophantine equation x2+2k = yn. Arch. Math.59 (1992), 341-344. Zbl0770.11019MR1179459
- [6] J.H.E. Cohn, The diophantine equation x2+2k = yn, II. Internat. J. Math. & Math. Sci.22 no. 3 (1999), 459-462. Zbl0960.11025MR1717165
- [7] H. Darmon, The equations xn +yn = x2 and xn + yn = z3. International Mathematics Research Notices10 (1993), 263-274. Zbl0805.11028MR1242931
- [8] H. Darmon, L. Merel, Winding quotients and some variants of Format's Last Theorem. J. Reine Angew. Math.490 (1997), 81-100. Zbl0976.11017MR1468926
- [9] F. Diamond, On deformation rings and Hecke rings. Ann. Math.144 no. 1 (1996), 137-166. Zbl0867.11032MR1405946
- [10] Y. Guo, M. Le, A note on the exponential diophantine equation x2 - 2m = yn. Proc. Amer. Math. Soc.123 (1995), 3627-3629. Zbl0852.11016MR1291786
- [11] W. Ivorra, Sur les équations xP + 2βyp = z2 et xP + 2β yp = 2z2. To appear in Acta Arith. Zbl1026.11035
- [12] A.W. Knapp, Elliptic curves. Mathematical Notes40, Princeton University Press, 1992. Zbl0804.14013MR1193029
- [13] M. Le, On Cohn's conjecture concerning the Diophantine equation x2 + 2m = yn, Arch. Math.78 no. 1 (2002), 26-35. Zbl1006.11013MR1887313
- [14] K. Ribet, On modular representations of Gal(/Q) arising from modular forms. Invent. Math.100 (1990), 431-476. Zbl0773.11039MR1047143
- [15] J.-P. Serre, Sur les répresentations modulaires de degré 2 de Gal(/Q). Duke Math. J.54 (1987), 179-230. Zbl0641.10026MR885783
- [16] N.P. Smart, The algorithmic resolution of diophantine equations. LMS Student Texts41, Cambridge University Press, 1998. Zbl0907.11001MR1689189
- [17] R. Taylor, A. Wiles, Ring-theoretic properties of certain Hecke algebras. Ann. Math.141 (1995), 553-572. Zbl0823.11030MR1333036
- [18] A. Wiles, Modular elliptic curves and Fermat's Last Theorem. Ann. Math.141 (1995), 443-551. Zbl0823.11029MR1333035
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.