L p -approximation of Jacobians

Jan Malý

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 4, page 659-666
  • ISSN: 0010-2628

Abstract

top
The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from Cart p ( Ω , 𝐑 m ) is approximated by 𝒞 1 functions strongly in 𝒜 q ( Ω , 𝐑 m ) whenever q < p . An example is shown of a function which is in cart p ( Ω , 𝐑 2 ) but not in cart p ( Ω , 𝐑 2 ) .

How to cite

top

Malý, Jan. "$L^p$-approximation of Jacobians." Commentationes Mathematicae Universitatis Carolinae 32.4 (1991): 659-666. <http://eudml.org/doc/247295>.

@article{Malý1991,
abstract = {The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname\{Cart\}^p(\Omega ,\mathbf \{R\}^m)$ is approximated by $\mathcal \{C\} ^1$ functions strongly in $\mathcal \{A\}^q(\Omega ,\mathbf \{R\}^m)$ whenever $q<p$. An example is shown of a function which is in $\operatorname\{cart\}^p(\Omega ,\mathbf \{R\}^2)$ but not in $\operatorname\{cart\}^p(\Omega ,\mathbf \{R\}^2)$.},
author = {Malý, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents; Sobolev space; approximation; smooth functions; nonlinear function spaces},
language = {eng},
number = {4},
pages = {659-666},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$L^p$-approximation of Jacobians},
url = {http://eudml.org/doc/247295},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Malý, Jan
TI - $L^p$-approximation of Jacobians
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 4
SP - 659
EP - 666
AB - The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from $\operatorname{Cart}^p(\Omega ,\mathbf {R}^m)$ is approximated by $\mathcal {C} ^1$ functions strongly in $\mathcal {A}^q(\Omega ,\mathbf {R}^m)$ whenever $q<p$. An example is shown of a function which is in $\operatorname{cart}^p(\Omega ,\mathbf {R}^2)$ but not in $\operatorname{cart}^p(\Omega ,\mathbf {R}^2)$.
LA - eng
KW - Sobolev spaces; minors of the Jacobi matrix; weak and strong convergence; cartesian currents; Sobolev space; approximation; smooth functions; nonlinear function spaces
UR - http://eudml.org/doc/247295
ER -

References

top
  1. Giaquinta M., Modica G., Souček J., Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 106 (1989), 97-159. {Erratum and addendum}. Arch. Rat. Mech. Anal. 109 (1990), 385-592. (1990) MR0980756
  2. Giaquinta M., Modica G., Souček J., Cartesian currents and variational problems for mappings into spheres, Annali S.N.S. Pisa 16 (1989), 393-485. (1989) MR1050333
  3. Giaquinta M., Modica G., Souček J., The Dirichlet energy of mappings with values into the sphere, Manuscripta Math. 65 (1989), 489-507. (1989) MR1019705
  4. Giaquinta M., Modica G., Souček J., The Dirichlet integral for mappings between manifolds: Cartesian currents and homology, Università di Firenze, preprint, 1991. MR1183409
  5. V. Šverák, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal. 100 (1988), 105-127. (1988) MR0913960
  6. W.P. Ziemer, Weakly Differentiable Functions. Sobolev Spaces and Function of Bounded Variation, Graduate Text in Mathematics 120, Springer-Verlag, 1989. MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.