Topological degree, Jacobian determinants and relaxation
Irene Fonseca; Nicola Fusco; Paolo Marcellini
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-B, Issue: 1, page 187-250
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFonseca, Irene, Fusco, Nicola, and Marcellini, Paolo. "Topological degree, Jacobian determinants and relaxation." Bollettino dell'Unione Matematica Italiana 8-B.1 (2005): 187-250. <http://eudml.org/doc/194572>.
@article{Fonseca2005,
abstract = {A characterization of the total variation $TV(u, \Omega)$ of the Jacobian determinant $\det Du$ is obtained for some classes of functions $u : \Omega \rightarrow \mathbb\{R\}^\{n\}$ outside the traditional regularity space $W^\{1, n\}(\Omega; \mathbb\{R\}^\{n\})$. In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity $x_\{0\}\in \Omega$. Relations between $TV(u, \Omega)$ and the distributional determinant $\text\{Det\}\, Du$ are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps $u\in W^\{1, p\}(\Omega; \mathbb\{R\}^\{n\})\cap W^\{1, \infty\}(\Omega\backslash \\{x_0\\}; \mathbb\{R\}^\{n\})$.},
author = {Fonseca, Irene, Fusco, Nicola, Marcellini, Paolo},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {187-250},
publisher = {Unione Matematica Italiana},
title = {Topological degree, Jacobian determinants and relaxation},
url = {http://eudml.org/doc/194572},
volume = {8-B},
year = {2005},
}
TY - JOUR
AU - Fonseca, Irene
AU - Fusco, Nicola
AU - Marcellini, Paolo
TI - Topological degree, Jacobian determinants and relaxation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2005/2//
PB - Unione Matematica Italiana
VL - 8-B
IS - 1
SP - 187
EP - 250
AB - A characterization of the total variation $TV(u, \Omega)$ of the Jacobian determinant $\det Du$ is obtained for some classes of functions $u : \Omega \rightarrow \mathbb{R}^{n}$ outside the traditional regularity space $W^{1, n}(\Omega; \mathbb{R}^{n})$. In particular, explicit formulas are deduced for functions that are locally Lipschitz continuous away from a given one point singularity $x_{0}\in \Omega$. Relations between $TV(u, \Omega)$ and the distributional determinant $\text{Det}\, Du$ are established, and an integral representation is obtained for the relaxed energy of certain polyconvex functionals at maps $u\in W^{1, p}(\Omega; \mathbb{R}^{n})\cap W^{1, \infty}(\Omega\backslash \{x_0\}; \mathbb{R}^{n})$.
LA - eng
UR - http://eudml.org/doc/194572
ER -
References
top- ACERBI, E. G. - BOUCHITTÉ, G. - FONSECA, I., Relaxation of convex functionals: the gap problem, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 20 (2003), 359-390. Zbl1025.49012MR1972867
- ACERBI, E. - DAL MASO, G., New lower semicontinuity results for polyconvex integrals case, Calc. Var., 2 (1994), 329-372. Zbl0810.49014MR1385074
- ACERBI, E. - FUSCO, N., Semicontinuity problems in the calculus of variations, Arch. Rational Mech. Anal., 86 (1984), 125-145. Zbl0565.49010MR751305
- BALL, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., 63 (1977), 337-403. Zbl0368.73040MR475169
- BALL, J. M., Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. Roy. Soc. London, A, 306 (1982), 557-611. Zbl0513.73020MR703623
- BETHUEL, F., A characterization of maps in which can be approximated by smooth maps, Ann. Inst. H. Poincaré, Anal. Non Lineaire, 7 (1990), 269-286. Zbl0708.58004MR1067776
- BETHUEL, F. - BREZIS, H. - HELÉIN F., F., Ginzburg-Landau Vortices, Birkhäuser, Boston, 1994. Zbl0802.35142MR1269538
- BOJARSKI, B. - HAJLCASZ, P., Pointwise inequalities for Sobolev functions and some applications, Studia Math., 106 (1993), 77-92. Zbl0810.46030MR1226425
- BOUCHITTÉ, G. - FONSECA, I. - MALÝ, J., The effective bulk energy of the relaxed energy of multiple integrals below the growth exponent, Proc. Royal Soc. Edinburgh Sect. A, 128 (1998), 463-479. Zbl0907.49008MR1632814
- BREZIS, H. - CORON, J. M. - LIEB, E. H., Harmonic maps with defects, Comm. Math. Phys., 107 (1986), 649-705. Zbl0608.58016MR868739
- BREZIS, H. - FUSCO, N. - SBORDONE, C., Integrability for the Jacobian of orientation preserving mappings, J. Funct. Anal, 115 (1993), 425-431. Zbl0847.26012MR1234399
- BREZIS, H. - NIRENBERG, L., Degree theory and BMO: I, Sel. Math., 2 (1995), 197-263. Zbl0852.58010MR1354598
- BREZIS, H. - NIRENBERG, L., Degree theory and BMO: II, Sel. Math., 3 (1996), 309-368. Zbl0868.58017MR1422201
- CARTAN, H., Formes différentielles, Hermann, Paris, 1967. Zbl0184.12701MR231303
- CELADA, P. - DAL MASO, G., Further remarks on the lower semicontinuity of polyconvex integrals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, 11 (1994), 661-691. Zbl0833.49013MR1310627
- CHAPMAN, S. J., A hierarchy of models for type-II superconductors, Siam Review, 42 (2000), 555-598. Zbl0967.82014MR1814048
- CHO, K. - GENT, A. N., Cavitation in models elastomeric composites, J. Mater. Sci., 23 (1988), 141-144.
- COIFMAN, R. - LIONS, P. L. - MEYER, Y. - SEMMES, S., Compacité par compensation et espaces de Hardy, C. R. Acad. Sci. Paris, 309 (1989), 945-949. Zbl0684.46044MR1054740
- DACOROGNA, B., Direct Methods in Calculus of Variations, Appl. Math. Sciences, 78, Springer-Verlag, Berlin1989. Zbl0703.49001MR990890
- DACOROGNA, B. - MARCELLINI, P., Semicontinuité pour des intégrandes polyconvexes sans continuité des déterminants, C. R. Acad. Sci. Paris, 311 (1990), 393-396. Zbl0723.49007MR1071650
- DACOROGNA, B. - MURAT, F., On the optimality of certain Sobolev exponents for the weak continuity of determinants, J. Funct. Anal., 105 (1992), 42-62. Zbl0769.46025MR1156669
- DAL MASO, G. - SBORDONE, C., Weak lower semicontinuity of polyconvex integrals: a borderline case, Math. Z., 218 (1995), 603-609. Zbl0822.49010MR1326990
- FEDERER, H., Geometric measure theory, Springer-Verlag, Berlin, 1969. Zbl0874.49001MR257325
- FONSECA, I. - FUSCO, N. - MARCELLINI, P., On the Total Variation of the Jacobian, J. Funct. Anal., 207 (2004), 1-32. Zbl1041.49016MR2027634
- FONSECA, I. - GANGBO, W., Local invertibility of Sobolev functions, SIAM J. Math. Anal., 26 (1995), 280-304. Zbl0839.30018MR1320221
- FONSECA, I. - GANGBO, W., Degree theory in analysis and applications, Oxford Lecture Series in Mathematics and its Applications, 2. Clarendon Press, Oxford, 1995. Zbl0852.47030MR1373430
- FONSECA, I. - MALÝ, J., Relaxation of Multiple Integrals below the growth exponent, Anal. Inst. H. Poincaré. Anal. Non Linéaire, 14 (1997), 309-338. Zbl0868.49011MR1450951
- FONSECA, I. - LEONI, G. - MALÝ, J., Weak continuity of jacobian integrals. In preparation.
- FONSECA, I. - MARCELLINI, P., Relaxation of multiple integrals in subcritical Sobolev spaces, J. Geometric Analysis, 7 (1997), 57-81. Zbl0915.49011MR1630777
- FUSCO, N. - HUTCHINSON, J. E., A direct proof for lower semicontinuity of polyconvex functionals, Manuscripta Math., 87 (1995), 35-50. Zbl0874.49015MR1329439
- GANGBO, W., On the weak lower semicontinuity of energies with polyconvex integrands, J. Math. Pures et Appl., 73 (1994), 455-469. Zbl0829.49011MR1300984
- GENT, A. N., Cavitation in rubber: a cautionary tale, Rubber Chem. Tech., 63 (1991), G49-G53.
- GENT, A. N. - TOMPKINS, D. A., Surface energy effects for small holes or particles in elastomers, J. Polymer Sci., Part A, 7 (1969), 1483-1488.
- GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Cartesian currents, weak dipheomorphisms and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal., 106 (1989), 97-159. Erratum and addendum: Arch. Rat. Mech. Anal., 109 (1990), 385-592. Zbl0712.73009MR980756
- GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Cartesian Currents and Variational Problems for Mappings into Spheres, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 16 (1989), 393-485. Zbl0713.49014MR1050333
- GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Liquid crystals: relaxed energies, dipoles, singular lines and singular points, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 17 (1990), 415-437. Zbl0760.49026MR1079984
- GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Graphs of finite mass which cannot be approximated in area by smooth graphs, Manuscripta Math., 78 (1993), 259-271. Zbl0796.58006MR1206156
- GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Cartesian currents in the calculus of variations I and II, Ergebnisse der Mathematik und Ihrer Grenzgebiete Vol. 38, Springer-Verlag, Berlin, 1998. Zbl0914.49002MR1645086
- HAJLCASZ, P., Note on weak approximation of minors, Ann. Inst. H. Poincaré, 12 (1995), 415-424. Zbl0910.49025MR1341410
- IWANIEC, T. - SBORDONE, C., On the integrability of the Jacobian under minimal hypotheses, Arch. Rational Mech. Anal., 119 (1992), 129-143. Zbl0766.46016MR1176362
- JAMES, R. D. - SPECTOR, S. J., The formation of filamentary voids in solids, J. Mech. Phys. Solids, 39 (1991), 783-813. Zbl0761.73020MR1120242
- JERRARD, R. L. - SONER, H. M., Functions of bounded higer variation, to appear. Zbl1057.49036MR1911049
- MALÝ, J., -approximation of Jacobians, Comment. Math. Univ. Carolin., 32 (1991), 659-666. Zbl0753.46024MR1159812
- MALÝ, J., Weak lower semicontinuity of polyconvex integrals, Proc. Roy. Soc. Edinburgh, 123A (1993), 681-691. Zbl0813.49017MR1237608
- MALÝ, J., Weak lower semicontinuity of quasiconvex integrals, Manusc. Math., 85 (1994), 419-428. Zbl0862.49017MR1305752
- MARCELLINI, P., Approximation of quasiconvex functions and lower semicontinuity of multiple integrals, Manuscripta Math., 51 (1985), 1-28. Zbl0573.49010MR788671
- MARCELLINI, P., On the definition and the lower semicontinuity of certain quasiconvex integrals, Ann. Inst. Henri Poincare, Analyse non Linéaire, 3 (1986), 391-409. Zbl0609.49009MR868523
- MARCELLINI, P., The stored-energy for some discontinuous deformations in nonlinear elasticity, Essays in honor of E. De Giorgi, Vol. 2, ed. F. Colombini et al., Birkhäuser, 1989, 767-786. Zbl0679.73006MR1034028
- MILNOR, J. M., From the differentiable viewpoint, The Univ. Press of Virginia, Charlottesville, 1965. Zbl0136.20402
- MORREY, C. B., Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966. Zbl1213.49002MR202511
- MÜLLER, S., Weak continuity of determinants and nonlinear elasticity, C. R. Acad. Sci. Paris, 307 (1988), 501-506. Zbl0679.34051MR964116
- MÜLLER, S., Det4det. A Remark on the distributional determinant, C. R. Acad. Sci. Paris, 311 (1990), 13-17. Zbl0717.46033MR1062920
- MÜLLER, S., Higher integrability of determinants and weak convergence in , J. Reine Angew. Math., 412 (1990), 20-34. Zbl0713.49004MR1078998
- MÜLLER, S., On the singular support of the distributional determinant, Annales Institut Henri Poincaré, Analyse Non Linéaire, 10 (1993), 657-696. Zbl0792.46027MR1253606
- MÜLLER, S. - SPECTOR, S. J., An existence theory for nonlinear elasticity that allows for cavitation, Arch. Rat. Mech. Anal., 131 (1995), 1-66. Zbl0836.73025MR1346364
- MÜLLER, S. - TANG, Q. - YAN, S. B., On a new class of elastic deformations not allowing for cavitation, Ann. IHP, 11 (1994), 217-243. Zbl0863.49002MR1267368
- MURAT, F., Compacité par compensation: condition necessaire et suffisante de continuité faible sous une hypothése de rang constant, Ann. Sc. Norm. Sup. Pisa, 8 (1981), 68-102. Zbl0464.46034MR616901
- RESHETNYAK, Y., Weak convergence and completely additive vector functions on a set, Sibir. Math., 9 (1968), 1039-1045. Zbl0176.44402
- SIVALOGANATHAN, J., Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity, Arch. Rat. Mech. Anal., 96 (1986), 97-136. Zbl0628.73018MR853969
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.