Cartesian currents and variational problems for mappings into spheres

M. Giaquinta; G. Modica; J. Souček

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1989)

  • Volume: 16, Issue: 3, page 393-485
  • ISSN: 0391-173X

How to cite


Giaquinta, M., Modica, G., and Souček, J.. "Cartesian currents and variational problems for mappings into spheres." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 16.3 (1989): 393-485. <>.

author = {Giaquinta, M., Modica, G., Souček, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {cartesian currents; degree; polyconvex extension; parametric integrand; energy minimizing maps; Dirichlet integral; liquid crystals; nonlinear hyperelasticity},
language = {eng},
number = {3},
pages = {393-485},
publisher = {Scuola normale superiore},
title = {Cartesian currents and variational problems for mappings into spheres},
url = {},
volume = {16},
year = {1989},

AU - Giaquinta, M.
AU - Modica, G.
AU - Souček, J.
TI - Cartesian currents and variational problems for mappings into spheres
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1989
PB - Scuola normale superiore
VL - 16
IS - 3
SP - 393
EP - 485
LA - eng
KW - cartesian currents; degree; polyconvex extension; parametric integrand; energy minimizing maps; Dirichlet integral; liquid crystals; nonlinear hyperelasticity
UR -
ER -


  1. [1] F. Almgrem - W. Browder - E.H. Lieb, Co-area, Liquid crystals, and minimal surfaces, In DDT - a selection of Papers, Springer-Verlag, 1987. Zbl0645.58015MR1032767
  2. [2] F. Almgrem - E.H. Lieb, Singularities of energy minimizing maps from the ball to the sphere: examples, counterexamples, and bounds, Preprint. 
  3. [3] L. Ambrosio - S. Mortola - V.M. Tortorelli, Functionals with linear growth defined on vector valued BV functions, preprint. Zbl0662.49007MR1113814
  4. [4] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal.63 (1977). Zbl0368.73040MR475169
  5. [5] J.M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. EdinburghA88 (1981) 315-328. Zbl0478.46032MR616782
  6. [6] J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity. Philos. Trans. Roy. Soc. A306 (1982) 577-611. Zbl0513.73020MR703623
  7. [7] J.M. Ball - F. Murat, W1.p-quasiconvexity and variational problems for multiple integrals. J. Funct. Anal.58 (1984) 225-253. Zbl0549.46019MR759098
  8. [8] F. Bethuel, A characterization of maps in H1 (B3,S 2) which can be approximated by smooth maps, preprint. Zbl0708.58004
  9. [9] F. Bethuel, Approximation dans des espaces de Sobolev entre deux variété et groupes d' homotopie, preprint. MR958784
  10. [10] F. Bethuel - X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, preprint. MR960223
  11. [11] J. Blat - JH. Morel, Elliptic problem image segmentation and their relation to fracture theory, preprint. Zbl0727.35040
  12. [12] R. Bott - L.W. Tu, Differential forms in Algebraic Topology, Springer-Verlag, New York, 1982. Zbl0496.55001MR658304
  13. [13] S. Brezis, Metastable harmonic maps, In "Metastability and incompletely posed problems" Eds. S. Antman, J.L. Ericksen, D. Kinderlehrer, J. Müller, Springer-Verlag1987. MR870008
  14. [14] S. Brezis, Sk-valued maps with singularities, In "Topics in Calculus of Variations" Ed. M. Giaquinta, Lecture Notes in Math. n.1365, Springer-Verlag1989. Zbl0684.49015MR994017
  15. [15] S. Brezis - J.M. Coron, Large solutions for harmonic maps in two dimensions, Commun. Math. Phys.92 (1983) 203-215. Zbl0532.58006MR728866
  16. [16] S. Brezis - J.M. Coron - E.H. Lieb, Harmonic maps with defects, Comm. Math. Phys.107 (1986), 649-705. Zbl0608.58016MR868739
  17. [17] H. Buseman G. Ewald - G. Shepard, Convex bodies and convexity on Grassmann cones, Part I to IVMath. Ann.151 (1963) 1-41. Zbl0112.37301MR157286
  18. [18] P.J. Ciarlet - J. Ne, Unilateral problems in nonlinear, three-dimensional elasticity, Arch. Rat. Mech. Anal.97 (1987) 171-188. 
  19. [19] B. Dacorogna, Remarques sur les notions de polyconvexité, quasi-convexité et convexité de rang 1. J. Math. pures et Appl.64 (1985) 403-438. Zbl0609.49007MR839729
  20. [20] G. Dal Maso, Integral representation on BV(Ω) of r-limits of variational integrals. Manuscripta Math.30 (1980) 387-416. Zbl0435.49016
  21. [21] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del calcolo delle variazioni, preprint. 
  22. [22] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set, preprint. Zbl0682.49002
  23. [23] J. Eells - L. Lemaire, A report on harmonic maps, Bull. London Math. Soc.10 (1978) 1-69. Zbl0401.58003MR495450
  24. [24] J. Eells - L. Lemaire, Selected topics in harmonic maps, Amer. Mat. Soc. Regional Conf. Series in Math.50, 1983. Zbl0515.58011MR703510
  25. [25] J. Eells - L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc.20 (1988) 385-524. Zbl0669.58009MR956352
  26. [26] J. Eells - J.B. Wood, Restrictions on harmonic maps of surfaces, Topology15 (1976) 263-266. Zbl0328.58008MR420708
  27. [27] I. Ekeland - R. Temam, Convex analysis and variational problems, North Holland, Amsterdam1976. Zbl0322.90046MR463994
  28. [28] J. Ericksen - D. Kinderlehrer, Theory and applications of liquid crystals, IMA Series vol 5, Springer-Verlag1987. Zbl0713.76006MR900827
  29. [29] M.J. Esteban, A direct variational approach to Skyrme's model for meson fields, Comm. Math. Phys.105 (1986) 571-591. Zbl0621.58035MR852091
  30. [30] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969. Zbl0176.00801MR257325
  31. [31] H. Federer - W. Fleming, Normal and integral currents, Ann. of Math.72 (1960) 458-520. Zbl0187.31301MR123260
  32. [32] M. Giaquinta - E. Giusti, The singular set of the minima of certain quadratic functionals, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 11 (1984), 45-55. Zbl0543.49018MR752579
  33. [33] M. Giaquinta - G. Modica - J. Sou, Cartesian currents, weak diffeomorphisms and existence theorems in nonlinear elasticity, Archive for Rat. Mech. Anal.106 (1989) 97-159. Erratum and addendum, to appear in Archive for Rat. Mech. Anal. Zbl0677.73014MR980756
  34. [34] R. Hardt - D. Kinderlehrer - F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Phys.105 (1986), 547-570. Zbl0611.35077MR852090
  35. [35] R. Hardt - D. Kinderlehrer - F.H. Lin, A remark about the stability of smooth equilibrium configurations of static liquid crystals, Mol. Cryst. Liq, Cryst.139 (1986) 189-194. 
  36. [36] R. Hardt - D. Kinderlehrer - F.H. Lin, Stable defects of minimizers of constrained variational principles, Ann. Inst. Henri Poincaré5 (1988) 207-322. Zbl0657.49018MR963102
  37. [37] R. Hardt - F.H. Lin, A remark on H1 mappings, Manuscripta Math.56 (1986) 1010. Zbl0618.58015MR846982
  38. [38] R. Hardt - L. Simon, Seminar on Geometric Measure Theory, Birkhäuser, Boston, 1986. Zbl0601.49029MR891187
  39. [39] J. Jost, The Dirichlet problem for harmonic maps from a surface with boundary into a 2-sphere with non-constant boundary values, J. Diff. Geom.19 (1984) 393-401. Zbl0551.58012MR755231
  40. [40] J. Jost, Harmonic maps between surfaces, Lecture notes in Math. 1062, Springer-Verlag1984. Zbl0542.58002MR754769
  41. [41] R.V. Kohn - G. Strang, Optimal design and relaxation of variational problems, Comm. Pure Appl. Math. to appear. Zbl0609.49008
  42. [42] L. Lemaire, Applications harmoniques de surfaces riemanniennes, J.Diff. Geom.13 (1978) 51-78. Zbl0388.58003MR520601
  43. [43] P.L. Lions, The concentration compactness principle in the calculus of variations. The limit case, part 2, Revista Matematica Iberoamericana1 (1985) 45-121. Zbl0704.49006MR850686
  44. [44] F.C. Liu, A Lusin type property of Sobolev functions, Indiana Univ. Math. J.26 (1977) 645-671. Zbl0368.46036MR450488
  45. [45] P. Marcellini, The stored energy of some discontinuous deformations in nonlinear elasticity, In Partial Differential Equations and the Calculus of Variations: Essays in Honor of Ennio De Giorgi, Birkäuser, Boston, 1989, to appear. Zbl0679.73006MR1034028
  46. [46] M. Meier, Removable singularities of harmonic maps and an application to minimized submanifolds, Indiana Univ. Math. J.35 (1986) 705-726. Zbl0618.58017MR865424
  47. [47] J.M. Morel, S. Solimini, Segmentation of images by variational methods, preprint. Zbl0679.68205
  48. [48] F. Morgan, Geometric measure theory, Academic Press, 1988. Zbl0671.49043MR933756
  49. [49] C.B. Morrey, Multiple integrals in the calculus of variations, Springer-Verlag, Berlin, 1966. Zbl0142.38701MR202511
  50. [50] S. Muller, Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris307 (1988) 501-576. Zbl0679.34051MR964116
  51. [51] D. Mumford, J. Shah, Boundary detection by minimizing functionals, Proceedings of the IEEE. Conference on computer vision and pattern recognition, San Francisco, 1985. 
  52. [52] L. Nirenberg, Topics in Nonlinear Functionals Analysis, New York University, Lectures Notes, New York (1974). Zbl0286.47037MR488102
  53. [53] T. Qi, Almost-everywhere injectivity in nonlinear elasticity, Proc. Roy. Soc. Edinburgh109A (1988) 79-95. Zbl0656.73010MR952330
  54. [54] Y.G. Reshetnyak, On the stability of conformal mappings in multidimensional spaces, Siberian Math. J.8 (1967) 69-85. Zbl0172.37801
  55. [55] Y.G. Reshetnyak, Stability theorems for mappings with bounded distorsion, Siberian Math. J.9 (1968) 499-512. Zbl0176.03503MR230901
  56. [56] Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set, Sibirskii Mat. Zhurnal9 (1968) 1386-1394. Zbl0176.44402MR240274
  57. [57] R. Schoen - K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom.17 (1982) 307-335. Zbl0521.58021MR664498
  58. [58] R. Schoen - K. Uhlenbeck, Boundary regularity and miscellaneous results on harmonic maps, J. Diff. Geom.18 (1983) 253-268. Zbl0547.58020MR710054
  59. [59] L. Simon, Lectures on Geometric Measure Theory, Proc. of the Centre for Math. Analysis vol. 3Australian National University, Canberra, 1983. Zbl0546.49019MR756417
  60. [60] A. Soyeur, The Dirichlet problem for harmonic maps from the disc into 2-sphere, preprint. Zbl0701.58020MR1037728
  61. [61] V. Šverák, Regularity properties of deformations with finite energy, Arch. Rat. Mech. Anal.98 (1987). Zbl0659.73038MR913960
  62. [62] B. White, A new proof of the compactness theorem for integral currents, preprint. Zbl0706.49028MR997362

Citations in EuDML Documents

  1. Mariano Giaquinta, Giuseppe Modica, Jiří Souček, Connectivity properties of the range of a weak diffeomorphism
  2. Jan Malý, L p -approximation of Jacobians
  3. M. Giaquinta, G. Modica, J. Souček, Liquid crystals : relaxed energies, dipoles, singular lines and singular points
  4. Paolo Maria Mariano, Giuseppe Modica, Ground states in complex bodies
  5. M. Carriero, A. Leaci, S k -valued maps minimizing the L p norm of the gradient with free discontinuities
  6. Paolo Maria Mariano, Giuseppe Modica, Ground states in complex bodies
  7. Mariano Giaquinta, Giuseppe Modica, Jiří Souček, Some remarks about the p -Dirichlet integral
  8. Piotr Hajłasz, A note on weak approximation of minors
  9. Irene Fonseca, Nicola Fusco, Paolo Marcellini, Topological degree, Jacobian determinants and relaxation

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.