Page 1 Next

Displaying 1 – 20 of 29

Showing per page

A non-semiprime associative algebra with zero weak radical.

Abdelfattah Haily (1997)

Extracta Mathematicae

The weak radical, W-Rad(A) of a non-associative algebra A, has been introduced by A. Rodríguez Palacios in [3] in order to generalize the Johnson's uniqueness of norm theorem to general complete normed non-associative algebras (see also [2] for another application of this notion). In [4], he showed that if A is a semiprime non-associative algebra with DCC on ideals, then W-Rad(A) = 0. In the first part of this paper we give an example of a non-semiprime associative algebra A with DCC on ideals and...

Radicals which define factorization systems

Barry J. Gardner (1991)

Commentationes Mathematicae Universitatis Carolinae

A method due to Fay and Walls for associating a factorization system with a radical is examined for associative rings. It is shown that a factorization system results if and only if the radical is strict and supernilpotent. For groups and non-associative rings, no radical defines a factorization system.

Rational string topology

Yves Félix, Jean-Claude Thomas, Micheline Vigué-Poirrier (2007)

Journal of the European Mathematical Society

We use the computational power of rational homotopy theory to provide an explicit cochain model for the loop product and the string bracket of a simply connected closed manifold M . We prove that the loop homology of M is isomorphic to the Hochschild cohomology of the cochain algebra C * ( M ) with coefficients in C * ( M ) . Some explicit computations of the loop product and the string bracket are given.

Currently displaying 1 – 20 of 29

Page 1 Next