On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm

Takao Komatsu

Acta Arithmetica (1998)

  • Volume: 86, Issue: 4, page 305-324
  • ISSN: 0065-1036

Abstract

top
We obtain the values concerning ( θ , ϕ ) = l i m i n f | q | | q | q θ - ϕ using the algorithm by Nishioka, Shiokawa and Tamura. In application, we give the values (θ,1/2), (θ,1/a), (θ,1/√(ab(ab+4))) and so on when θ = (√(ab(ab+4)) - ab)/(2a) = [0;a,b,a,b,...].

How to cite

top

Takao Komatsu. "On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm." Acta Arithmetica 86.4 (1998): 305-324. <http://eudml.org/doc/207199>.

@article{TakaoKomatsu1998,
abstract = {We obtain the values concerning $ (θ,ϕ) = lim inf_\{|q| → ∞\} |q| ‖qθ - ϕ‖$ using the algorithm by Nishioka, Shiokawa and Tamura. In application, we give the values (θ,1/2), (θ,1/a), (θ,1/√(ab(ab+4))) and so on when θ = (√(ab(ab+4)) - ab)/(2a) = [0;a,b,a,b,...].},
author = {Takao Komatsu},
journal = {Acta Arithmetica},
keywords = {Nishioka-Shiokawa-Tamura algorithm; inhomogeneous approximation constant; continued fraction expansion},
language = {eng},
number = {4},
pages = {305-324},
title = {On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm},
url = {http://eudml.org/doc/207199},
volume = {86},
year = {1998},
}

TY - JOUR
AU - Takao Komatsu
TI - On inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm
JO - Acta Arithmetica
PY - 1998
VL - 86
IS - 4
SP - 305
EP - 324
AB - We obtain the values concerning $ (θ,ϕ) = lim inf_{|q| → ∞} |q| ‖qθ - ϕ‖$ using the algorithm by Nishioka, Shiokawa and Tamura. In application, we give the values (θ,1/2), (θ,1/a), (θ,1/√(ab(ab+4))) and so on when θ = (√(ab(ab+4)) - ab)/(2a) = [0;a,b,a,b,...].
LA - eng
KW - Nishioka-Shiokawa-Tamura algorithm; inhomogeneous approximation constant; continued fraction expansion
UR - http://eudml.org/doc/207199
ER -

References

top
  1. [1] J. W. S. Cassels, Über l ̲ i m x + x | ϑ x + α - y | , Math. Ann. 127 (1954), 288-304. 
  2. [2] T. W. Cusick, A. M. Rockett and P. Szüsz, On inhomogeneous Diophantine approximation, J. Number Theory 48 (1994), 259-283. Zbl0820.11042
  3. [3] R. Descombes, Sur la répartition des sommets d'une ligne polygonale régulière non fermée, Ann. Sci. École Norm. Sup. 73 (1956), 283-355. Zbl0072.03802
  4. [4] T. Komatsu, The fractional part of nθ + ϕ and Beatty sequences, J. Théor. Nombres Bordeaux 7 (1995), 387-406. Zbl0849.11027
  5. [5] T. Komatsu, On inhomogeneous continued fraction expansion and inhomogeneous Diophantine approximation, J. Number Theory 62 (1997), 192-212. Zbl0878.11029
  6. [6] K. Nishioka, I. Shiokawa and J. Tamura, Arithmetical properties of a certain power series, J. Number Theory. 42 (1992), 61-87. Zbl0770.11039
  7. [7] C. G. Pinner, personal communication. 
  8. [8] T. van Ravenstein, The three gap theorem (Steinhaus conjecture), J. Austral. Math. Soc. Ser. A 45 (1988), 360-370. Zbl0663.10039
  9. [9] V. T. Sós, On the theory of Diophantine approximations, II, Acta Math. Acad. Sci. Hungar. 9 (1958), 229-241. Zbl0086.03902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.