Counting monic irreducible polynomials in for which order of is odd
- [1] Département de Mathématiques, Université de Caen, Campus 2, 14032 Caen Cedex, France
Journal de Théorie des Nombres de Bordeaux (2007)
- Volume: 19, Issue: 1, page 41-58
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBallot, Christian. "Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 41-58. <http://eudml.org/doc/249969>.
@article{Ballot2007,
abstract = {Hasse showed the existence and computed the Dirichlet density of the set of primes $p$ for which the order of $2\hspace\{4.44443pt\}(\@mod \; p)$ is odd; it is $7/24$. Here we mimic successfully Hasse’s method to compute the density $\delta _q$ of monic irreducibles $P$ in $\mathbb\{F\}_q[X]$ for which the order of $X\hspace\{4.44443pt\}(\@mod \; P)$ is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the $\delta _p$’s as $p$ varies through all rational primes.},
affiliation = {Département de Mathématiques, Université de Caen, Campus 2, 14032 Caen Cedex, France},
author = {Ballot, Christian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {density; finite field},
language = {eng},
number = {1},
pages = {41-58},
publisher = {Université Bordeaux 1},
title = {Counting monic irreducible polynomials $P$ in $\{\mathbb\{F\}_q[X]\}$ for which order of $\{X\!\!\hspace\{4.44443pt\}(\@mod \; P)\}$ is odd},
url = {http://eudml.org/doc/249969},
volume = {19},
year = {2007},
}
TY - JOUR
AU - Ballot, Christian
TI - Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 41
EP - 58
AB - Hasse showed the existence and computed the Dirichlet density of the set of primes $p$ for which the order of $2\hspace{4.44443pt}(\@mod \; p)$ is odd; it is $7/24$. Here we mimic successfully Hasse’s method to compute the density $\delta _q$ of monic irreducibles $P$ in $\mathbb{F}_q[X]$ for which the order of $X\hspace{4.44443pt}(\@mod \; P)$ is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the $\delta _p$’s as $p$ varies through all rational primes.
LA - eng
KW - density; finite field
UR - http://eudml.org/doc/249969
ER -
References
top- C. Ballot, Density of prime divisors of linear recurrences. Memoirs of the A.M.S., vol. 115, Nu. 551 (1995). Zbl0827.11006MR1257079
- C. Ballot, Competing prime asymptotic densities in . A discussion. Submitted preprint. Zbl1239.11011
- C. Ballot, An elementary method to compute prime densities in . To appear in Integers. Zbl1169.11039
- R. Descombes, Éléments de théorie des nombres. Presses Universitaires de France (1986). Zbl0584.10001MR843073
- J. von zur Gathen et als, Average order in cyclic groups. J. Theor. Nombres Bordx, vol. 16, Nu. 1, (2004), 107–123. Zbl1079.11003MR2145575
- H. H. Hasse, Über die Dichte der Primzahlen , für die eine vorgegebene ganzrationale Zahl von gerader bzw. ungerader Ordnung mod ist. Math. Annale 166 (1966), 19–23. Zbl0139.27501MR205975
- J. C. Lagarias, The set of primes dividing the Lucas Numbers has density 2/3. Pacific J. Math., vol. 118, Nu. 2 (1985), 449–461 and “Errata”, vol. 162 (1994), 393–396. Zbl0790.11014
- S. Lang, Algebraic Number Theory. Springer-Verlag, 1986. Zbl0601.12001MR1282723
- R. R. Laxton, Arithmetic Properties of Linear Recurrences. Computers and Number Theory (A.O.L. Atkin and B.J. Birch, Eds.), Academic Press, New York, 1971, 119–124. Zbl0226.10012
- P. Moree, On the prime density of Lucas sequences. J. Theor. Nombres Bordx, vol. 8, Nu. 2, (1996), 449–459. Zbl0873.11058MR1438482
- P. Moree, On the average number of elements in a finite field with order or index in a prescribed residue class. Finite fields Appl., vol. 10, Nu. 3, (2004), 438–463. Zbl1061.11050MR2067608
- P. Moree & P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arithm., vol. 82, Nu. 4, (1997), 403–410. Zbl0913.11048MR1483692
- W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. PWN - Polish Scientific Publishers, 1974. Zbl0276.12002MR347767
- K. Prachar, Primzahlverteilung. Springer-Verlag, 1957. Zbl0080.25901MR87685
- M. Rosen, Number Theory in Function Fields. Springer-Verlag, Graduate texts in mathematics 210, 2002. Zbl1043.11079MR1876657
- J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. Zbl0432.10001MR344216
- W. Sierpinski, Sur une décomposition des nombres premiers en deux classes. Collect. Math., vol. 10, (1958), 81–83. Zbl0084.27106MR103854
- H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 1993. Zbl0816.14011MR1251961
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.