Counting monic irreducible polynomials P in 𝔽 q [ X ] for which order of X ( mod P ) is odd

Christian Ballot[1]

  • [1] Département de Mathématiques, Université de Caen, Campus 2, 14032 Caen Cedex, France

Journal de Théorie des Nombres de Bordeaux (2007)

  • Volume: 19, Issue: 1, page 41-58
  • ISSN: 1246-7405

Abstract

top
Hasse showed the existence and computed the Dirichlet density of the set of primes p for which the order of 2 ( mod p ) is odd; it is 7 / 24 . Here we mimic successfully Hasse’s method to compute the density δ q of monic irreducibles P in 𝔽 q [ X ] for which the order of X ( mod P ) is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the δ p ’s as p varies through all rational primes.

How to cite

top

Ballot, Christian. "Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd." Journal de Théorie des Nombres de Bordeaux 19.1 (2007): 41-58. <http://eudml.org/doc/249969>.

@article{Ballot2007,
abstract = {Hasse showed the existence and computed the Dirichlet density of the set of primes $p$ for which the order of $2\hspace\{4.44443pt\}(\@mod \; p)$ is odd; it is $7/24$. Here we mimic successfully Hasse’s method to compute the density $\delta _q$ of monic irreducibles $P$ in $\mathbb\{F\}_q[X]$ for which the order of $X\hspace\{4.44443pt\}(\@mod \; P)$ is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the $\delta _p$’s as $p$ varies through all rational primes.},
affiliation = {Département de Mathématiques, Université de Caen, Campus 2, 14032 Caen Cedex, France},
author = {Ballot, Christian},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {density; finite field},
language = {eng},
number = {1},
pages = {41-58},
publisher = {Université Bordeaux 1},
title = {Counting monic irreducible polynomials $P$ in $\{\mathbb\{F\}_q[X]\}$ for which order of $\{X\!\!\hspace\{4.44443pt\}(\@mod \; P)\}$ is odd},
url = {http://eudml.org/doc/249969},
volume = {19},
year = {2007},
}

TY - JOUR
AU - Ballot, Christian
TI - Counting monic irreducible polynomials $P$ in ${\mathbb{F}_q[X]}$ for which order of ${X\!\!\hspace{4.44443pt}(\@mod \; P)}$ is odd
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2007
PB - Université Bordeaux 1
VL - 19
IS - 1
SP - 41
EP - 58
AB - Hasse showed the existence and computed the Dirichlet density of the set of primes $p$ for which the order of $2\hspace{4.44443pt}(\@mod \; p)$ is odd; it is $7/24$. Here we mimic successfully Hasse’s method to compute the density $\delta _q$ of monic irreducibles $P$ in $\mathbb{F}_q[X]$ for which the order of $X\hspace{4.44443pt}(\@mod \; P)$ is odd. But on the way, we are also led to a new and elementary proof of these densities. More observations are made, and averages are considered, in particular, an average of the $\delta _p$’s as $p$ varies through all rational primes.
LA - eng
KW - density; finite field
UR - http://eudml.org/doc/249969
ER -

References

top
  1. C. Ballot, Density of prime divisors of linear recurrences. Memoirs of the A.M.S., vol. 115, Nu. 551 (1995). Zbl0827.11006MR1257079
  2. C. Ballot, Competing prime asymptotic densities in 𝔽 q [ X ] . A discussion. Submitted preprint. Zbl1239.11011
  3. C. Ballot, An elementary method to compute prime densities in 𝔽 q [ X ] . To appear in Integers. Zbl1169.11039
  4. R. Descombes, Éléments de théorie des nombres. Presses Universitaires de France (1986). Zbl0584.10001MR843073
  5. J. von zur Gathen et als, Average order in cyclic groups. J. Theor. Nombres Bordx, vol. 16, Nu. 1, (2004), 107–123. Zbl1079.11003MR2145575
  6. H. H. Hasse, Über die Dichte der Primzahlen p , für die eine vorgegebene ganzrationale Zahl a 0 von gerader bzw. ungerader Ordnung mod p ist. Math. Annale 166 (1966), 19–23. Zbl0139.27501MR205975
  7. J. C. Lagarias, The set of primes dividing the Lucas Numbers has density 2/3. Pacific J. Math., vol. 118, Nu. 2 (1985), 449–461 and “Errata”, vol. 162 (1994), 393–396. Zbl0790.11014
  8. S. Lang, Algebraic Number Theory. Springer-Verlag, 1986. Zbl0601.12001MR1282723
  9. R. R. Laxton, Arithmetic Properties of Linear Recurrences. Computers and Number Theory (A.O.L. Atkin and B.J. Birch, Eds.), Academic Press, New York, 1971, 119–124. Zbl0226.10012
  10. P. Moree, On the prime density of Lucas sequences. J. Theor. Nombres Bordx, vol. 8, Nu. 2, (1996), 449–459. Zbl0873.11058MR1438482
  11. P. Moree, On the average number of elements in a finite field with order or index in a prescribed residue class. Finite fields Appl., vol. 10, Nu. 3, (2004), 438–463. Zbl1061.11050MR2067608
  12. P. Moree & P. Stevenhagen, Prime divisors of Lucas sequences. Acta Arithm., vol. 82, Nu. 4, (1997), 403–410. Zbl0913.11048MR1483692
  13. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers. PWN - Polish Scientific Publishers, 1974. Zbl0276.12002MR347767
  14. K. Prachar, Primzahlverteilung. Springer-Verlag, 1957. Zbl0080.25901MR87685
  15. M. Rosen, Number Theory in Function Fields. Springer-Verlag, Graduate texts in mathematics 210, 2002. Zbl1043.11079MR1876657
  16. J. P. Serre, A course in Arithmetic. Springer-Verlag, 1973. Zbl0432.10001MR344216
  17. W. Sierpinski, Sur une décomposition des nombres premiers en deux classes. Collect. Math., vol. 10, (1958), 81–83. Zbl0084.27106MR103854
  18. H. Stichtenoth, Algebraic Function Fields and Codes. Springer-Verlag, 1993. Zbl0816.14011MR1251961

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.