Local isometry classes of Riemannian 3 -manifolds with constant Ricci eigenvalues ρ 1 = ρ 2 ρ 3 > 0

Oldřich Kowalski; Masami Sekizawa

Archivum Mathematicum (1996)

  • Volume: 032, Issue: 2, page 137-145
  • ISSN: 0044-8753

How to cite

top

Kowalski, Oldřich, and Sekizawa, Masami. "Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3 > 0$." Archivum Mathematicum 032.2 (1996): 137-145. <http://eudml.org/doc/247862>.

@article{Kowalski1996,
author = {Kowalski, Oldřich, Sekizawa, Masami},
journal = {Archivum Mathematicum},
keywords = {principal Ricci curvatures; Riemannian manifolds; classification; local isometry classes; Riemannian 3-manifolds; constant Ricci eigenvalues},
language = {eng},
number = {2},
pages = {137-145},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3 > 0$},
url = {http://eudml.org/doc/247862},
volume = {032},
year = {1996},
}

TY - JOUR
AU - Kowalski, Oldřich
AU - Sekizawa, Masami
TI - Local isometry classes of Riemannian $3$-manifolds with constant Ricci eigenvalues $\rho _1=\rho _2\ne \rho _3 > 0$
JO - Archivum Mathematicum
PY - 1996
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 032
IS - 2
SP - 137
EP - 145
LA - eng
KW - principal Ricci curvatures; Riemannian manifolds; classification; local isometry classes; Riemannian 3-manifolds; constant Ricci eigenvalues
UR - http://eudml.org/doc/247862
ER -

References

top
  1. P.Bueken, Three-dimensional Riemannian manifolds with constant principal Ricci curvatures ρ 1 = ρ 2 ρ 3 , preprint, 1995, to appear in J.Math.Phys. (1995) MR1400834
  2. O.Kowalski, An explicit classification of 3-dimensional Riemannian spaces satisfying R ( X , Y ) · R = 0 , preprint, 1991, to appear in Czech Math.J. (1991) MR1408298
  3. O.Kowalski, A classification of Riemannian 3-manifolds with constant principal Ricci curvatures ρ 1 = ρ 2 ρ 3 , Nagoya Math.J. 132(1993), 1-36. (1993) MR1253692
  4. O.Kowalski, M.Sekizawa, Riemannian 3-manifolds with c -conullity two, preprint, 1995, to appear in Bolletino U.M.I., 1996. (1995) MR1456259
  5. D.McManus, Riemannian three-metrics with degenerate Ricci tensor, J.Math.Phys. 36(1995), 362-369. (1995) MR1308650

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.