Pseudosymmetric and Weyl-pseudosymmetric -contact metric manifolds

N. Malekzadeh; E. Abedi; U.C. De

Archivum Mathematicum (2016)

  • Volume: 052, Issue: 1, page 1-12
  • ISSN: 0044-8753

Abstract

top
In this paper we classify pseudosymmetric and Ricci-pseudosymmetric -contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric -contact metric manifolds.

How to cite

top

Malekzadeh, N., Abedi, E., and De, U.C.. "Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds." Archivum Mathematicum 052.1 (2016): 1-12. <http://eudml.org/doc/276746>.

@article{Malekzadeh2016,
abstract = {In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds.},
author = {Malekzadeh, N., Abedi, E., De, U.C.},
journal = {Archivum Mathematicum},
keywords = {pseudosymmetric; Ricci-pseudosymmetric; Weyl-pseudosymmetric; $(\kappa , \mu )$-manifolds},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds},
url = {http://eudml.org/doc/276746},
volume = {052},
year = {2016},
}

TY - JOUR
AU - Malekzadeh, N.
AU - Abedi, E.
AU - De, U.C.
TI - Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 1
SP - 1
EP - 12
AB - In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds.
LA - eng
KW - pseudosymmetric; Ricci-pseudosymmetric; Weyl-pseudosymmetric; $(\kappa , \mu )$-manifolds
UR - http://eudml.org/doc/276746
ER -

References

top
  1. Belkhelfa, M., Deszcz, R., Verstraelen, L., Symmetry properties of Sasakian space forms, Soochow J. Math. 31 (2005), 611–616. (2005) Zbl1087.53021MR2190204
  2. Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer–Verlag, Berlin, 1976. (1976) Zbl0319.53026MR0467588
  3. Blair, D.E., Koufogiorgos, T., Papantoniou, B.J., 10.1007/BF02761646, Israel J. Math. 91 (1995), 57–65. (1995) Zbl0837.53038MR1348312DOI10.1007/BF02761646
  4. Calvaruso, G., 10.1007/s10587-006-0045-1, Czechoslovak Math. J. 56 (2006), 649–657. (2006) Zbl1164.53339MR2291764DOI10.1007/s10587-006-0045-1
  5. Chaki, M.C., Chaki, B., On pseudosymmetric manifolds admitting a type of semisymmetric connection, Soochow J. Math. 13 (1987), 1–7. (1987) MR0924340
  6. Cho, J.T., Inoguchi, J.-I., 10.4134/JKMS.2005.42.5.913, J. Korean Math. Soc. 42 (2005), 913–932. (2005) Zbl1081.53018MR2157352DOI10.4134/JKMS.2005.42.5.913
  7. Cho, J.T., Inoguchi, J.–I., Lee, J.–E., 10.4064/cm114-1-7, Colloq. Math. 114 (2009), 77–98. (2009) Zbl1163.53017MR2457280DOI10.4064/cm114-1-7
  8. Defever, F., Deszcz, R., Verstraelen, L., 10.4064/cm-74-2-253-260, Colloq. Math. 74 (1997), 253–260. (1997) Zbl0903.53025MR1477567DOI10.4064/cm-74-2-253-260
  9. Defever, F., Deszcz, R., Verstraelen, L., Vrancken, L., 10.1063/1.530718, J. Math. Phys. 35 (1994), 5908–5921. (1994) MR1299927DOI10.1063/1.530718
  10. Deszcz, R., On Ricci–pseudo–symmetric warped products, Demonstratio Math. 22 (1989), 1053–1065. (1989) Zbl0707.53020MR1077121
  11. Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34. (1992) Zbl0808.53012MR1315367
  12. Gouli-Andreou, F., Moutafi, E., 10.2140/pjm.2009.239.17, Pacific J. Math. 239 (2009), 17–37. (2009) Zbl1155.53045MR2449009DOI10.2140/pjm.2009.239.17
  13. Gouli–Andreou, F., Moutafi, E., 10.2140/pjm.2010.245.57, Pacific J. Math. 245 (2010), 57–77. (2010) Zbl1186.53043MR2602682DOI10.2140/pjm.2010.245.57
  14. Hashimoto, N., Sekizawa, M., Three-dimensional conformally flat pseudo–symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286. (2000) Zbl1054.53060MR1811172
  15. Kowalski, O., Sekizawa, M., Local isometry classes of Riemannian 3–manifolds with constant Ricci eigenvalues , Arch. Math. (Brno) 32 (1996), 137–145. (1996) MR1407345
  16. Kowalski, O., Sekizawa, M., Three–dimensional Riemannian manifolds of c–conullity two, World Scientific (Singapore–New Jersey–London–Hong Kong) (1996), Published as Chapter 11 in Monograph E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian Manifolds of Conullity Two. (1996) 
  17. Kowalski, O., Sekizawa, M., Pseudo–symmetric spaces of constant type in dimension three–elliptic spaces, Rend. Mat. Appl. (7) 17 (1997), 477–512. (1997) Zbl0889.53026MR1608724
  18. Kowalski, O., Sekizawa, M., Pseudo–symmetric spaces of constant type in dimension three–non–elliptic spaces, Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1–28. (1998) Zbl0945.53020MR1656076
  19. Ogiue, K., 10.2996/kmj/1138844949, Kodai Math. Sem. Rep. 16 (1964), 223–232. (1964) Zbl0136.18003MR0172223DOI10.2996/kmj/1138844949
  20. O’Neill, B., Semi–Riemannian Geometry, Academic Press New York, 1983. (1983) Zbl0531.53051MR0719023
  21. Özgür, C., On Kenmotsu manifolds satisfying certain pseudosymmetric conditions, World Appl. Sci. J. 1 (2006), 144–149. (2006) 
  22. Papantoniou, B.J., Contact Riemannian manifolds satifying and –nullity distribution, Yokohama Math. J. 40 (1993), 149–161. (1993) MR1216349
  23. Prakasha, D.G., Bagewadi, C.S., Basavarajappa, N.S., On pseudosymmetric Lorentzian –Sasakian manifolds, Int. J. Pure Appl. Math. 48 (2008), 57–65. (2008) Zbl1155.53019MR2456434
  24. Szabó, Z.I., 10.4310/jdg/1214437486, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165DOI10.4310/jdg/1214437486
  25. Szabó, Z.I., 10.1007/BF00233102, Geom. Dedicata 19 (1) (1985), 65–108. (1985) MR0797152DOI10.1007/BF00233102
  26. Tanno, S., 10.2748/tmj/1178227985, Tohoku Math. J. 40 (1988), 441–448. (1988) Zbl0655.53035MR0957055DOI10.2748/tmj/1178227985

NotesEmbed ?

top

You must be logged in to post comments.