Pseudosymmetric and Weyl-pseudosymmetric -contact metric manifolds
N. Malekzadeh; E. Abedi; U.C. De
Archivum Mathematicum (2016)
- Volume: 052, Issue: 1, page 1-12
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topMalekzadeh, N., Abedi, E., and De, U.C.. "Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds." Archivum Mathematicum 052.1 (2016): 1-12. <http://eudml.org/doc/276746>.
@article{Malekzadeh2016,
abstract = {In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds.},
author = {Malekzadeh, N., Abedi, E., De, U.C.},
journal = {Archivum Mathematicum},
keywords = {pseudosymmetric; Ricci-pseudosymmetric; Weyl-pseudosymmetric; $(\kappa , \mu )$-manifolds},
language = {eng},
number = {1},
pages = {1-12},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds},
url = {http://eudml.org/doc/276746},
volume = {052},
year = {2016},
}
TY - JOUR
AU - Malekzadeh, N.
AU - Abedi, E.
AU - De, U.C.
TI - Pseudosymmetric and Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds
JO - Archivum Mathematicum
PY - 2016
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 052
IS - 1
SP - 1
EP - 12
AB - In this paper we classify pseudosymmetric and Ricci-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds in the sense of Deszcz. Next we characterize Weyl-pseudosymmetric $(\kappa , \mu )$-contact metric manifolds.
LA - eng
KW - pseudosymmetric; Ricci-pseudosymmetric; Weyl-pseudosymmetric; $(\kappa , \mu )$-manifolds
UR - http://eudml.org/doc/276746
ER -
References
top- Belkhelfa, M., Deszcz, R., Verstraelen, L., Symmetry properties of Sasakian space forms, Soochow J. Math. 31 (2005), 611–616. (2005) Zbl1087.53021MR2190204
- Blair, D.E., Contact manifolds in Riemannian geometry, Lecture Notes in Math., Springer–Verlag, Berlin, 1976. (1976) Zbl0319.53026MR0467588
- Blair, D.E., Koufogiorgos, T., Papantoniou, B.J., 10.1007/BF02761646, Israel J. Math. 91 (1995), 57–65. (1995) Zbl0837.53038MR1348312DOI10.1007/BF02761646
- Calvaruso, G., 10.1007/s10587-006-0045-1, Czechoslovak Math. J. 56 (2006), 649–657. (2006) Zbl1164.53339MR2291764DOI10.1007/s10587-006-0045-1
- Chaki, M.C., Chaki, B., On pseudosymmetric manifolds admitting a type of semisymmetric connection, Soochow J. Math. 13 (1987), 1–7. (1987) MR0924340
- Cho, J.T., Inoguchi, J.-I., 10.4134/JKMS.2005.42.5.913, J. Korean Math. Soc. 42 (2005), 913–932. (2005) Zbl1081.53018MR2157352DOI10.4134/JKMS.2005.42.5.913
- Cho, J.T., Inoguchi, J.–I., Lee, J.–E., 10.4064/cm114-1-7, Colloq. Math. 114 (2009), 77–98. (2009) Zbl1163.53017MR2457280DOI10.4064/cm114-1-7
- Defever, F., Deszcz, R., Verstraelen, L., 10.4064/cm-74-2-253-260, Colloq. Math. 74 (1997), 253–260. (1997) Zbl0903.53025MR1477567DOI10.4064/cm-74-2-253-260
- Defever, F., Deszcz, R., Verstraelen, L., Vrancken, L., 10.1063/1.530718, J. Math. Phys. 35 (1994), 5908–5921. (1994) MR1299927DOI10.1063/1.530718
- Deszcz, R., On Ricci–pseudo–symmetric warped products, Demonstratio Math. 22 (1989), 1053–1065. (1989) Zbl0707.53020MR1077121
- Deszcz, R., On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1–34. (1992) Zbl0808.53012MR1315367
- Gouli-Andreou, F., Moutafi, E., 10.2140/pjm.2009.239.17, Pacific J. Math. 239 (2009), 17–37. (2009) Zbl1155.53045MR2449009DOI10.2140/pjm.2009.239.17
- Gouli–Andreou, F., Moutafi, E., 10.2140/pjm.2010.245.57, Pacific J. Math. 245 (2010), 57–77. (2010) Zbl1186.53043MR2602682DOI10.2140/pjm.2010.245.57
- Hashimoto, N., Sekizawa, M., Three-dimensional conformally flat pseudo–symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286. (2000) Zbl1054.53060MR1811172
- Kowalski, O., Sekizawa, M., Local isometry classes of Riemannian 3–manifolds with constant Ricci eigenvalues , Arch. Math. (Brno) 32 (1996), 137–145. (1996) MR1407345
- Kowalski, O., Sekizawa, M., Three–dimensional Riemannian manifolds of c–conullity two, World Scientific (Singapore–New Jersey–London–Hong Kong) (1996), Published as Chapter 11 in Monograph E. Boeckx, O. Kowalski, L. Vanhecke, Riemannian Manifolds of Conullity Two. (1996)
- Kowalski, O., Sekizawa, M., Pseudo–symmetric spaces of constant type in dimension three–elliptic spaces, Rend. Mat. Appl. (7) 17 (1997), 477–512. (1997) Zbl0889.53026MR1608724
- Kowalski, O., Sekizawa, M., Pseudo–symmetric spaces of constant type in dimension three–non–elliptic spaces, Bull. Tokyo Gakugei Univ. (4) 50 (1998), 1–28. (1998) Zbl0945.53020MR1656076
- Ogiue, K., 10.2996/kmj/1138844949, Kodai Math. Sem. Rep. 16 (1964), 223–232. (1964) Zbl0136.18003MR0172223DOI10.2996/kmj/1138844949
- O’Neill, B., Semi–Riemannian Geometry, Academic Press New York, 1983. (1983) Zbl0531.53051MR0719023
- Özgür, C., On Kenmotsu manifolds satisfying certain pseudosymmetric conditions, World Appl. Sci. J. 1 (2006), 144–149. (2006)
- Papantoniou, B.J., Contact Riemannian manifolds satifying and –nullity distribution, Yokohama Math. J. 40 (1993), 149–161. (1993) MR1216349
- Prakasha, D.G., Bagewadi, C.S., Basavarajappa, N.S., On pseudosymmetric Lorentzian –Sasakian manifolds, Int. J. Pure Appl. Math. 48 (2008), 57–65. (2008) Zbl1155.53019MR2456434
- Szabó, Z.I., 10.4310/jdg/1214437486, J. Differential Geom. 17 (1982), 531–582. (1982) MR0683165DOI10.4310/jdg/1214437486
- Szabó, Z.I., 10.1007/BF00233102, Geom. Dedicata 19 (1) (1985), 65–108. (1985) MR0797152DOI10.1007/BF00233102
- Tanno, S., 10.2748/tmj/1178227985, Tohoku Math. J. 40 (1988), 441–448. (1988) Zbl0655.53035MR0957055DOI10.2748/tmj/1178227985
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.