Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points
Commentationes Mathematicae Universitatis Carolinae (1996)
- Volume: 37, Issue: 1, page 23-42
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMalý, Jan. "Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points." Commentationes Mathematicae Universitatis Carolinae 37.1 (1996): 23-42. <http://eudml.org/doc/247923>.
@article{Malý1996,
abstract = {Let $u$ be a weak solution of a quasilinear elliptic equation of the growth $p$ with a measure right hand term $\mu $. We estimate $u(z)$ at an interior point $z$ of the domain $\Omega $, or an irregular boundary point $z\in \partial \Omega $, in terms of a norm of $u$, a nonlinear potential of $\mu $ and the Wiener integral of $\mathbf \{R\}^n\setminus \Omega $. This quantifies the result on necessity of the Wiener criterion.},
author = {Malý, Jan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic equations; Wiener criterion; nonlinear potentials; measure data; measure data; Wiener integral; Wiener criterion},
language = {eng},
number = {1},
pages = {23-42},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points},
url = {http://eudml.org/doc/247923},
volume = {37},
year = {1996},
}
TY - JOUR
AU - Malý, Jan
TI - Pointwise estimates of nonnegative subsolutions of quasilinear elliptic equations at irregular boundary points
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1996
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 37
IS - 1
SP - 23
EP - 42
AB - Let $u$ be a weak solution of a quasilinear elliptic equation of the growth $p$ with a measure right hand term $\mu $. We estimate $u(z)$ at an interior point $z$ of the domain $\Omega $, or an irregular boundary point $z\in \partial \Omega $, in terms of a norm of $u$, a nonlinear potential of $\mu $ and the Wiener integral of $\mathbf {R}^n\setminus \Omega $. This quantifies the result on necessity of the Wiener criterion.
LA - eng
KW - elliptic equations; Wiener criterion; nonlinear potentials; measure data; measure data; Wiener integral; Wiener criterion
UR - http://eudml.org/doc/247923
ER -
References
top- Adams D.R., potential theory techniques and nonlinear PDE, In: Potential Theory (Ed. M. Kishi) Walter de Gruyter & Co Berlin (1992), 1-15. (1992) Zbl0760.22013MR1167217
- Adams D.R., Hedberg L.I., Function Spaces and Potential Theory, Springer Verlag Berlin (1995). (1995) Zbl0834.46021MR1411441
- Adams D.R., Meyers N.G., Thinness and Wiener criteria for non-linear potentials, Indiana Univ. Math. J. 22 (1972), 169-197. (1972) Zbl0244.31012MR0316724
- Brelot M., On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer ({1971}). ({1971}) Zbl0222.31014MR0281940
- Federer H., Ziemer W.P., The Lebesgue set of a function whose partial derivatives are -th power summable, Indiana Univ. Math. J. 22 (1972), 139-158. (1972) MR0435361
- Frehse J., Capacity methods in the theory of partial differential equations, Jahresber. Deutsch. Math. Verein. 84 (1982), 1-44. (1982) Zbl0486.35002MR0644068
- Fuglede B., The quasi topology associated with a countably subadditive set function, Ann. Inst. Fourier Grenoble 21.1 (1971), 123-169. (1971) Zbl0197.19401MR0283158
- Gariepy R., Ziemer W.P., A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rat. Mech. Anal. 67 (1977), 25-39. (1977) Zbl0389.35023MR0492836
- Hedberg L.I., Nonlinear potentials and approximation in the mean by analytic functions, Math. Z. 129 (1972), 299-319. (1972) MR0328088
- Hedberg L.I., Wolff Th.H., Thin sets in nonlinear potential theory, Ann. Inst. Fourier 33.4 (1983), 161-187. (1983) Zbl0508.31008MR0727526
- Heinonen J., Kilpeläinen T., On the Wiener criterion and quasilinear obstacle problems, Trans. Amer. Math. Soc. 310 (1988), 239-255. (1988) MR0965751
- Heinonen J., Kilpeläinen T., Martio O., Fine topology and quasilinear elliptic equations, Ann. Inst. Fourier 39.2 (1989), 293-318. (1989) MR1017281
- Heinonen J., Kilpeläinen T., Martio O., Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford University Press, Oxford (1993). (1993) MR1207810
- Kilpeläinen T., Malý J., Degenerate elliptic equations with measure data and nonlinear potentials, Ann. Scuola Norm. Sup. Pisa. Cl. Science, Ser. IV 19 (1992), 591-613. (1992) MR1205885
- Kilpeläinen T., Malý J., Supersolutions to degenerate elliptic equations on quasi open sets, Comm. Partial Differential Equations 17 (1992), 371-405. (1992) MR1163430
- Kilpeläinen T., Malý J., The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172 (1994), 137-161. (1994) MR1264000
- Lieberman G.M., Sharp forms of estimates for subsolutions and supersolutions of quasilinear elliptic equations with right hand side a measure, Comm. Partial Differential Equations 18 (1993), 1991-2112. (1993) MR1233190
- Lindqvist P., Martio O., Two theorems of N. Wiener for solutions of quasilinear elliptic equations, Acta Math. 155 (1985), 153-171. (1985) Zbl0607.35042MR0806413
- Littman W., Stampacchia G., Weinberger H.F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa. Serie III 17 (1963), 43-77. (1963) Zbl0116.30302MR0161019
- Malý J., Nonlinear potentials and quasilinear PDE's, Proceedings of the International Conference on Potential Theory, Kouty, 1994, to appear. Zbl0857.35046MR1404703
- Maz'ya V.G., On the continuity at a boundary point of solutions of quasi-linear elliptic equations (Russian), Vestnik Leningrad. Univ. 25 42-55 English translation Vestnik Leningrad. Univ. Math. 3 (1976), 225-242. (1976) MR0274948
- Maz'ya V.G., Khavin V.P., Nonlinear potential theory (Russian), Uspekhi Mat. Nauk 27.6 (1972), 67-138 English translation Russian Math. Surveys 27 (1972), 71-148. (1972)
- Malý J., Ziemer W.P., Fine Regularity of Solutions of Elliptic Equations, book in preparation.
- Meyers N.G., Continuity properties of potentials, Duke Math. J. 42 (1975), 157-166. (1975) Zbl0334.31004MR0367235
- Rakotoson J.M., Ziemer W.P., Local behavior of solutions of quasilinear elliptic equations with general structure, Trans. Amer. Math. Soc. 319 (1990), 747-764. (1990) Zbl0708.35023MR0998128
- Skrypnik I.V., Nonlinear Elliptic Boundary Value Problems, Teubner Verlag, Leipzig (1986). (1986) Zbl0617.35001MR0915342
- Trudinger N.S., On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721-747. (1967) Zbl0153.42703MR0226198
- Wiener N., Certain notions in potential theory, J. Math. Phys. 3 (1924), 24-5 Reprinted in: Norbert Wiener: Collected works. Vol. 1 (1976), MIT Press, pp. 364-391. (1924) MR0532698
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.