The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer; S. Louboutin; R. Okazaki

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 2, page 387-406
  • ISSN: 1246-7405

Abstract

top
We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

How to cite

top

Lemmermeyer, F., Louboutin, S., and Okazaki, R.. "The class number one problem for some non-abelian normal CM-fields of degree $24$." Journal de théorie des nombres de Bordeaux 11.2 (1999): 387-406. <http://eudml.org/doc/248333>.

@article{Lemmermeyer1999,
abstract = {We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to $\mathcal \{A\}_4$, the alternating group of degree $4$ and order $12$. There are two such fields with Galois group $\mathcal \{A\}_4 \times \mathcal \{C\}_2$ (see Theorem 14) and at most one with Galois group SL$_2(\mathbb \{F\}_3)$ (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number $1$.},
author = {Lemmermeyer, F., Louboutin, S., Okazaki, R.},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {nonabelian normal CM-fields; class number one; Galois group},
language = {eng},
number = {2},
pages = {387-406},
publisher = {Université Bordeaux I},
title = {The class number one problem for some non-abelian normal CM-fields of degree $24$},
url = {http://eudml.org/doc/248333},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Lemmermeyer, F.
AU - Louboutin, S.
AU - Okazaki, R.
TI - The class number one problem for some non-abelian normal CM-fields of degree $24$
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 2
SP - 387
EP - 406
AB - We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to $\mathcal {A}_4$, the alternating group of degree $4$ and order $12$. There are two such fields with Galois group $\mathcal {A}_4 \times \mathcal {C}_2$ (see Theorem 14) and at most one with Galois group SL$_2(\mathbb {F}_3)$ (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number $1$.
LA - eng
KW - nonabelian normal CM-fields; class number one; Galois group
UR - http://eudml.org/doc/248333
ER -

References

top
  1. [1] J.V. Armitage, A. Frohlich, Classnumbers and unit signatures. Mathematika14 (1967), 94-98. Zbl0149.29501MR214566
  2. [2] C. Bachoc, S.-H. Kwon, Sur les extensions de groupe de Galois Ã4. Acta Arith.62 (1992), 1-10. Zbl0784.11051MR1179006
  3. [3] H. CohenA course in computational algebraic number theory. Grad. Texts Math. 138, Springer-Verlag, Berlin, Heidelberg, New York (1993). Zbl0786.11071MR1228206
  4. [4] H. Cohen, F. Diaz y Diaz, M. Olivier, Tables of octic fields with a quartic subfield. Math. Comp., à paraître. Zbl1036.11066
  5. [5] A. Derhem, Capitulation dans les extensions quadratiques non ramifiées de corps de nombres cubiques cycliques. thèse, Université Laval, Québec (1988). 
  6. [6] Ph. Furtwängler, Über das Verhalten der Ideale des Grundkörpers im Klassenkörper. Monatsh. Math. Phys.27 (1916), 1-15. Zbl46.0246.01MR1548760JFM46.0246.01
  7. [7] H. Heilbronn, Zeta-functions and L-functions. Algebraic Number Theory, Chapter VIII, J.W.S. Cassels and A. Fröhlich, Academic Press, (1967). MR218327
  8. [8] G. James, M. Liebeck, Representations and Characters of groups. Cambridge University Press, (1993). Zbl0792.20006MR1237401
  9. [9] KANT V4, by M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner, M. Schörnig, and K. Wildanger, J. Symbolic Computation24 (1997),267-283. Zbl0886.11070MR1484479
  10. [10] H. Koch, Über den 2-Klassenkörperturm eines quadratischen Zahlkörpers. I, J. Reine Angew. Math.214/215 (1963), 201-206. Zbl0123.03904MR164945
  11. [11] P. Kolvenbach, Zur arithmetischen Theorie der SL(2, 3)-Erweiterungen. Diss. Köln, 1982. 
  12. [12] S.-H. Kwon, Corps de nombres de degré 4 de type alterné. C. R. Acad. Sci. Paris299 (1984), 41-43. Zbl0564.12007MR756515
  13. [13] S. Lang, Cyclotomic Fields II. Springer-Verlag1980 Zbl0435.12001MR566952
  14. [14] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I. Acta Arith.72 (1995), 347-359. Zbl0837.11059MR1348202
  15. [15] F. Lemmermeyer, Unramified quaternion extensions of quadratic number fields. J. Théor. N. Bordeaux9 (1997), 51-68. Zbl0890.11031MR1469661
  16. [16] Y. Lefeuvre, Corps diédraux à multiplication complexe principaux. Ann. Inst. Fourier, à paraitre. Zbl0952.11024
  17. [17] S. Louboutin, R. Okazaki, Determination of all non-normal quartic CM-fields and of all non-abelian normal octic CM-fields with class number one. Acta Arith.67 (1994), 47-62. Zbl0809.11069MR1292520
  18. [18] S. Louboutin, R. Okazaki, The class number one problem for some non-abelian normal CM-fields of 2-power degrees. Proc. London Math. Soc.76, No.3 (1998), 523-548. Zbl0891.11054MR1616805
  19. [19] S. Louboutin, R. Okazaki, M. Olivier, The class number one problem for some non-abelian normal CM-fields. Trans. Amer. Math. Soc.349 (1997), 3657-3678. Zbl0893.11045MR1390044
  20. [20] S. Louboutin, Lower bounds for relative class numbers of CM-fields. Proc. Amer. Math. Soc.120 (1994), 425-434. Zbl0795.11058MR1169041
  21. [21] S. Louboutin, Majoration du résidu au point 1 des fonctions zêta de certains corps de nombres. J. Math. Soc. Japan50 (1998), 57-69. Zbl1040.11081MR1484611
  22. [22] S. Louboutin, The class number one problem for the non-abelian normal CM-fields of degree 16. Acta Arith.82 (1997), 173-196. Zbl0881.11079MR1477509
  23. [23] S. Louboutin, Upper bounds on |L(1, χ)| and applications. Canad. J. Math., 50 (4), (1998), 794-815. Zbl0912.11046
  24. [24] R. Okazaki, Inclusion of CM-fields and divisibility of class numbers. Acta Arith., à paraître. Zbl0952.11023
  25. [25] User's Guide to PARI-GP, by C. Batut,K. Belabas,D. Bernardi,H. CohenandM. Olivierlast updated Nov. 14, 1997; Laboratoire A2X, Univ. Bordeaux I. 
  26. [26] Y.-H. Park, S.-H. Kwon, Determination of all imaginary abelian sextic number fields with class number &lt; 11. Acta Arith.82 (1997), 27-43. Zbl0889.11036MR1475764
  27. [27] A. Rio, Dyadic exercises for octahedral extensions. preprint 1997; URL: http://www-ma2.upc.as/~rio/papers.html Zbl0941.12001
  28. [28] H.M. Stark, Some effective cases of the Brauer-Siegel theorem. Invent. Math.23 (1974), 135-152. Zbl0278.12005MR342472
  29. [29] O. Taussky, A remark on the class field tower. J. London Math. Soc.12 (1937), 82-85. Zbl0016.20002JFM63.0144.03
  30. [30] A.D. Thomas, G.V. Wood, Group Tables, Shiva Publishing Ltd, Kent, UK 1980. Zbl0441.20001MR572793
  31. [31] L.C. Washington, Introduction to Cyclotomic Fields. Grad. Texts Math. 83, Springer-Verlag1982; 2nd edition 1997. Zbl0484.12001MR718674
  32. [32] A. Weil, Exercices dyadiques. Invent. Math.27 (1974), 1-22. Zbl0307.12017MR379445

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.