Nonlinear homogeneous eigenvalue problem in R N : nonstandard variational approach

Pavel Drábek; Zakaria Moudan; Abdelfettah Touzani

Commentationes Mathematicae Universitatis Carolinae (1997)

  • Volume: 38, Issue: 3, page 421-431
  • ISSN: 0010-2628

Abstract

top
The nonlinear eigenvalue problem for p-Laplacian - div ( a ( x ) | u | p - 2 u ) = λ g ( x ) | u | p - 2 u in N , u > 0 in N , lim | x | u ( x ) = 0 , is considered. We assume that 1 < p < N and that g is indefinite weight function. The existence and C 1 , α -regularity of the weak solution is proved.

How to cite

top

Drábek, Pavel, Moudan, Zakaria, and Touzani, Abdelfettah. "Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach." Commentationes Mathematicae Universitatis Carolinae 38.3 (1997): 421-431. <http://eudml.org/doc/248097>.

@article{Drábek1997,
abstract = {The nonlinear eigenvalue problem for p-Laplacian \[ \left\lbrace \begin\{array\}\{ll\}- \operatorname\{div\} (a(x) |\nabla u|^\{p-2\} \nabla u) = \lambda g (x) |u|^\{p-2\} u \text\{ in \} \mathbb \{R\}^N, \ u >0 \text\{ in \} \mathbb \{R\}^N, \mathop \{\lim \}\limits \_\{|x|\rightarrow \infty \} u(x) = 0, \end\{array\}\right.\] is considered. We assume that $1 < p < N$ and that $g$ is indefinite weight function. The existence and $C^\{1, \alpha \}$-regularity of the weak solution is proved.},
author = {Drábek, Pavel, Moudan, Zakaria, Touzani, Abdelfettah},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {eigenvalue; the p-Laplacian; indefinite weight; regularity; -Laplacian; eigenvalue; indefinite weight; regularity},
language = {eng},
number = {3},
pages = {421-431},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach},
url = {http://eudml.org/doc/248097},
volume = {38},
year = {1997},
}

TY - JOUR
AU - Drábek, Pavel
AU - Moudan, Zakaria
AU - Touzani, Abdelfettah
TI - Nonlinear homogeneous eigenvalue problem in $R^N$: nonstandard variational approach
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1997
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 38
IS - 3
SP - 421
EP - 431
AB - The nonlinear eigenvalue problem for p-Laplacian \[ \left\lbrace \begin{array}{ll}- \operatorname{div} (a(x) |\nabla u|^{p-2} \nabla u) = \lambda g (x) |u|^{p-2} u \text{ in } \mathbb {R}^N, \ u >0 \text{ in } \mathbb {R}^N, \mathop {\lim }\limits _{|x|\rightarrow \infty } u(x) = 0, \end{array}\right.\] is considered. We assume that $1 < p < N$ and that $g$ is indefinite weight function. The existence and $C^{1, \alpha }$-regularity of the weak solution is proved.
LA - eng
KW - eigenvalue; the p-Laplacian; indefinite weight; regularity; -Laplacian; eigenvalue; indefinite weight; regularity
UR - http://eudml.org/doc/248097
ER -

References

top
  1. Adams R.A., Sobolev Spaces, Academic Press, 1975. Zbl1098.46001MR0450957
  2. Allegretto W., Huang Y.X., Eigenvalues of the indefinite weight p-Laplacian in weighted spaces, Funkc. Ekvac. 38 (1995), 233-242. (1995) Zbl0922.35114MR1356326
  3. Drábek P., Nonlinear eigenvalue for p-Laplacian in N , Math. Nach 173 (1995), 131-139. (1995) MR1336957
  4. Drábek, Huang Y.X., Bifurcation problems for the p-Laplacian in N , to appear in Trans. of AMS. 
  5. Fleckinger J., Manasevich R.F., Stavrakakis N.M., de Thelin F., Principal eigenvalues for some quasilinear elliptic equations on N , preprint. 
  6. Huang Y.X., Eigenvalues of the p-Laplacian in N with indefinite weight, Comment. Math. Univ. Carolinae 36 (1995), 519-527. (1995) MR1364493
  7. Lindqvist P., On the equation d i v ( | u | p - 2 u ) + λ | u | p - 2 u = 0 , Proc. Amer. Math. Society 109 (1990), 157-164. (1990) Zbl0714.35029MR1007505
  8. Serin J., Local behavior of solutions of quasilinear equations, Acta Math. 111 (1964), 247-302. (1964) MR0170096
  9. Tolkdorf P., Regularity for a more general class of quasilinear elliptic equations, J. Diff. Equations 51 (1984), 126-150. (1984) MR0727034
  10. Trudinger N.S., On Harnack type inequalities and their applications to quasilinear elliptic equations, Comm. Pure. Appl. Math. 20 (1967), 721-747. (1967) MR0226198

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.