Metric-fine uniform frames

Joanne L. Walters-Wayland

Commentationes Mathematicae Universitatis Carolinae (1998)

  • Volume: 39, Issue: 3, page 617-632
  • ISSN: 0010-2628

Abstract

top
A locallic version of Hager’s metric-fine spaces is presented. A general definition of 𝒜 -fineness is given and various special cases are considered, notably 𝒜 = all metric frames, 𝒜 = complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.

How to cite

top

Walters-Wayland, Joanne L.. "Metric-fine uniform frames." Commentationes Mathematicae Universitatis Carolinae 39.3 (1998): 617-632. <http://eudml.org/doc/248265>.

@article{Walters1998,
abstract = {A locallic version of Hager’s metric-fine spaces is presented. A general definition of $\mathcal \{A\}$-fineness is given and various special cases are considered, notably $\mathcal \{A\} =$ all metric frames, $\mathcal \{A\} =$ complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.},
author = {Walters-Wayland, Joanne L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {uniform frames and sigma frames; fine; metric-fine; completion; complete metric frames; -fineness},
language = {eng},
number = {3},
pages = {617-632},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Metric-fine uniform frames},
url = {http://eudml.org/doc/248265},
volume = {39},
year = {1998},
}

TY - JOUR
AU - Walters-Wayland, Joanne L.
TI - Metric-fine uniform frames
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 3
SP - 617
EP - 632
AB - A locallic version of Hager’s metric-fine spaces is presented. A general definition of $\mathcal {A}$-fineness is given and various special cases are considered, notably $\mathcal {A} =$ all metric frames, $\mathcal {A} =$ complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.
LA - eng
KW - uniform frames and sigma frames; fine; metric-fine; completion; complete metric frames; -fineness
UR - http://eudml.org/doc/248265
ER -

References

top
  1. Banaschewski B., Recent results in pointfree topology, Annals New York Acad. of Sci. 659 (1992), 29-41. (1992) MR1485267
  2. Banaschewski B., The frame envelope of a σ -frame, Quaestiones Math. 16 (1991), 51-60. (1991) MR1217474
  3. Banaschewski B., Gilmour C.R.A., Stone Čech compactification and dimension theory for regular σ -frames, J. London Math. Soc. 39 (1989), 1-8. (1989) Zbl0675.06005MR0989914
  4. Banaschewski B., Gilmour C.R.A., Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolinae 37 (1996), 577-587. (1996) Zbl0881.54018MR1426922
  5. Banaschewski B., Mulvey C., Stone Čech compactification of locales I, Houston J. Math. 6 (1980), 301-312. (1980) Zbl0473.54026MR0597771
  6. Banaschewski B., Pultr A., Samuel compactification and completion of uniform frames, Math. Proc. Camb. Phil. Soc. 108 (1990), 63-78. (1990) Zbl0733.54020MR1049760
  7. Banaschewski B., Pultr A., Paracompactness revisited, Applied Categorical Structures 1 (1993), 181-190. (1993) Zbl0797.54032MR1245799
  8. Gillman L., Jerrison M., Rings of Continuous Functions, Van Nostrand Princeton (1960). (1960) MR0116199
  9. Gilmour C.R.A., Realcompact Alexandroff spaces and regular σ -frames, Math. Proc. Camb. Phil. Soc. 96 (1984), 73-79. (1984) MR0743702
  10. Frolik Z., A note on metric-fine spaces, Proc. Amer. Math. Soc. 46 (1974), 111-119. (1974) Zbl0301.54033MR0358704
  11. Hager A., Some nearly fine uniform spaces, Proc. London Math. Soc. 28 (1974), 517-546. (1974) Zbl0284.54017MR0397670
  12. Hager A., Three classes of uniform spaces, Proc. Prague Conf. on General Topology, 1971. Zbl0313.54030MR0353270
  13. Hager A., Uniformities induced by proximity, cozero and Baire sets., unpublished manuscript. 
  14. Hager A., Rice M.D., Coreflections commuting with completion, J. of Math. 26 (101) (1976), 371-380. (1976) MR0418051
  15. Isbell J., Atomless parts of spaces, Math. Scand. 31 (1972), 5-32. (1972) Zbl0246.54028MR0358725
  16. Isbell J., Uniform Spaces, Amer. Math. Soc. Providence (1964). (1964) Zbl0124.15601
  17. Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Math. Cambridge University Press (1982). (1982) Zbl0499.54001MR0698074
  18. Johnstone P.T., The point of pointless topology, Bull. Amer. Math. Soc 8 (1983), 41-52. (1983) Zbl0499.54002MR0682820
  19. Kříž I., A direct description of uniform completion in locales and a characterization of LT groups, Cahiers Topologie et Geom. Differentielle Categoriques 27 (1986), 19-34. (1986) MR0845407
  20. Kříž I., Pultr A., Systems of covers of frames and resulting subframes, Proc. 14th Winter School, Suppl. ai Rendiconti del Circ. Mat. di Palermo 14 (1987), 353-364. (1987) MR0920868
  21. Madden J., Kappa frames, J. Pure and Applied Algebra 70 (1991), 107-127. (1991) Zbl0721.06006MR1100510
  22. Madden J., Vermeer H., Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. (1986) Zbl0603.54021MR0830360
  23. Pultr A., Pointless uniformities I: Complete regularity, Comment. Math. Univ. Carolinae 25 (1984), 91-104. (1984) Zbl0543.54023MR0749118
  24. Pultr A., Pointless uniformities II: (Dia)metrization, Comment. Math. Univ. Carolinae 25 (1984), 104-120. (1984) MR0749119
  25. Pultr A., Remarks on metrizable frames, Proc. 12th Winter School, Suppl. ai Rendiconti del Circ. Mat. di Palermo 6 (1984), 247-258. (1984) MR0782722
  26. Pultr A., Ulehla J., Notes on characterization of paracompact frames, Comment. Math. Univ. Carolinae 30 (1989), 377-384. (1989) Zbl0672.54018MR1014137
  27. Reynolds G., Alexandroff algebras and complete regularity, Proc. Amer. Math. Soc. 76 (1979), 322-326. (1979) Zbl0416.54015MR0537098
  28. Rice M.D., Metric-fine uniform spaces, Proc. London Math. Soc. 11 (1975), 53-64. (1975) Zbl0324.54018MR0420566
  29. Rice M.D., Complete uniform spaces, Proc. Second Internat. Topology Conf. (Pittsburgh), 1972. Zbl0327.54025
  30. Rice M.D., Subcategories of uniform spaces, Trans. Amer. Math. Soc. 221 (1975), 305-314. (1975) Zbl0306.54038MR0358708
  31. Sun S.H., On paracompact locales and metric locales, Comment. Math. Univ. Carolinae 30 (1989), 101-107. (1989) Zbl0691.06003MR0995708
  32. Walters J.L., Uniform sigma frames and the cozero part of uniform frames, Masters Thesis, University of Cape Town (1989). (1989) 
  33. Walters J.L., Compactifications and uniformities on sigma frames, Comm. Math. Univ. Carolinae 32 (1991), 189-198. (1991) Zbl0735.54014MR1118301
  34. Walters-Wayland J.L., Completeness and nearly fine uniform frames, Doctoral Thesis, Universite Catholique de Louvain (1995). (1995) 
  35. Walters-Wayland J.L., Shirota's Theorem in the frame setting, preprint. 
  36. Walters-Wayland J.L., Cozfine and measurable uniform frames, preprint. Zbl0935.54004MR1733252
  37. Walters-Wayland J.L., Injectivity and subfineness in uniform locales, preprint. 
  38. Willard S., General Topology, Addison-Wesley Reading, Mass. (1970). (1970) Zbl0205.26601MR0264581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.