Compactifications and uniformities on sigma frames
Commentationes Mathematicae Universitatis Carolinae (1991)
- Volume: 32, Issue: 1, page 189-198
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topWalters-Wayland, Joanne L.. "Compactifications and uniformities on sigma frames." Commentationes Mathematicae Universitatis Carolinae 32.1 (1991): 189-198. <http://eudml.org/doc/247245>.
@article{Walters1991,
abstract = {A bijective correspondence between strong inclusions and compactifications in the setting of $\sigma $-frames is presented. The category of uniform $\sigma $-frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the $\sigma $-frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.},
author = {Walters-Wayland, Joanne L.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {strong inclusion; compactification; uniform $\sigma $-frame; uniform cozero; sigma frames; Samuel compactification},
language = {eng},
number = {1},
pages = {189-198},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Compactifications and uniformities on sigma frames},
url = {http://eudml.org/doc/247245},
volume = {32},
year = {1991},
}
TY - JOUR
AU - Walters-Wayland, Joanne L.
TI - Compactifications and uniformities on sigma frames
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 1
SP - 189
EP - 198
AB - A bijective correspondence between strong inclusions and compactifications in the setting of $\sigma $-frames is presented. The category of uniform $\sigma $-frames is defined and a description of the Samuel compactification is given. It is shown that the Samuel compactification of a uniform frame is completely determined by the $\sigma $-frame consisting of its uniform cozero part, and consequently, any compactification of any frame is so determined.
LA - eng
KW - strong inclusion; compactification; uniform $\sigma $-frame; uniform cozero; sigma frames; Samuel compactification
UR - http://eudml.org/doc/247245
ER -
References
top- Banaschewski B., Frames and compactifications, Proc. I. International Symp. on Extension Theory of Topological Structures and Its Applications. VEB Deutscher Verlag der Wissenschaften, 1969. Zbl0188.28006
- Banaschewski B., Gilmour C.R.A., Stone-Čech compactification and dimension theory for regular -frames, J. London Math. Soc.(2) No. 127, 39, part 1 1-8 (1989). (1989) Zbl0675.06005MR0989914
- Banaschewski B., Mulvey C., Stone-Čech compactification of Locales I., Houston J. of Math. 6, 3 (1980), 301-312. (1980) Zbl0473.54026MR0597771
- Frith J.L., The Category of Uniform Frames, Cahier de Topologie et Geometrie, to appear. Zbl0738.18002MR1109372
- Gilmour C.R.A., Realcompact Alexandroff spaces and regular -frames, Math. Proc. Cambridge Philos. Soc. 96 (1984), 73-79. (1984) MR0743702
- Ginsburg S., Isbell J.R., Some operators on uniform spaces, Trans. Amer. Math. Soc. 36 (1959), 145-168. (1959) Zbl0087.37601MR0112119
- Johnstone P.T., Stone Spaces, Cambridge Studies in Advanced Math. 3, Cambridge Univ. Press, 1982. Zbl0586.54001MR0698074
- Madden J., Vermeer H., Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. (1985), 1-8. (1985)
- Pultr A., Pointless uniformities I. Complete regularity, Comment. Math. Univ. Carolinae 25 (1984), 91-104. (1984) Zbl0543.54023MR0749118
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.