# Diophantine approximation on algebraic varieties

Journal de théorie des nombres de Bordeaux (1999)

- Volume: 11, Issue: 2, page 439-502
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topNakamaye, Michael. "Diophantine approximation on algebraic varieties." Journal de théorie des nombres de Bordeaux 11.2 (1999): 439-502. <http://eudml.org/doc/248322>.

@article{Nakamaye1999,

abstract = {We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.},

author = {Nakamaye, Michael},

journal = {Journal de théorie des nombres de Bordeaux},

keywords = {Diophantine approximation; rational points on algebraic varieties; arithmetic algebraic geometry; Roth's theorem; nonvanishing lemma for polynomials in several variables; Roth's lemma; Dyson's lemma; Mordell conjecture; Faltings' theorem; finiteness of rational points; algebraic curve of genus greater than one; Vojta's generalization of Dyson's lemma; products of curves of arbitrary genus; Lang conjecture; Subspace Theorem; lower bound for the rational approximation to a hyperplane},

language = {eng},

number = {2},

pages = {439-502},

publisher = {Université Bordeaux I},

title = {Diophantine approximation on algebraic varieties},

url = {http://eudml.org/doc/248322},

volume = {11},

year = {1999},

}

TY - JOUR

AU - Nakamaye, Michael

TI - Diophantine approximation on algebraic varieties

JO - Journal de théorie des nombres de Bordeaux

PY - 1999

PB - Université Bordeaux I

VL - 11

IS - 2

SP - 439

EP - 502

AB - We present an overview of recent advances in diophantine approximation. Beginning with Roth's theorem, we discuss the Mordell conjecture and then pass on to recent higher dimensional results due to Faltings-Wustholz and to Faltings respectively.

LA - eng

KW - Diophantine approximation; rational points on algebraic varieties; arithmetic algebraic geometry; Roth's theorem; nonvanishing lemma for polynomials in several variables; Roth's lemma; Dyson's lemma; Mordell conjecture; Faltings' theorem; finiteness of rational points; algebraic curve of genus greater than one; Vojta's generalization of Dyson's lemma; products of curves of arbitrary genus; Lang conjecture; Subspace Theorem; lower bound for the rational approximation to a hyperplane

UR - http://eudml.org/doc/248322

ER -

## References

top- [B1] E. Bombieri, On the Thue-Siegel-Dyson theorem. Acta Math.148 (1982), 255-296. Zbl0505.10015MR666113
- [B2] E. Bombieri, The Mordell Conjecture revisited. Ann. Sc. Norm. Sup. Pisa, Cl. Sci., IV, 17 (1991), 615-640. Zbl0722.14010MR1093712
- [D] F.J. Dyson, The approximation to algebraic numbers by rationals, Acta Math.9 (1947), 225-240. Zbl0030.02101MR23854
- [EE] B. Edixhoven & J.-H. Evertse editors, Diophantine Approximation and Abelian Varieties. Springer Lecture Notes 1566 (1993). MR1288998
- [EV] H. Esnault & E. Viehweg, Dyson's Lemma for polynomials in several variables (and the Theorem of Roth). Inv. Math.78 (1984), 445-490. Zbl0545.10021MR768988
- [F1] G. Faltings, Diophantine Approximation on Abelian Varieties. Annals of Math.133 (1991), 549-576. Zbl0734.14007MR1109353
- [F2] G. Faltings, The general case of S. Lang's conjecture. in: Christante and Messing (eds.), Barsotti symposium in algebraic geometry, Academic Press, (1994), 175-182. Zbl0823.14009MR1307396
- [FW1] G. Faltings & G. Wüstholz, editors, Rational Points. Vieweg, (1984). Zbl0753.14019MR766568
- [FW2] G. Faltings & G. Wüstholz, Diophantine approximations on projective spaces. Inv. math.116 (1994), 109-138. Zbl0805.14011MR1253191
- [H] M. Hindry, Sur les Conjectures de Mordell et Lang. Astérisque, 209 (1992), 39-56. Zbl0792.14009MR1211002
- [L1] S. Lang, Fundamentals of Diophantine Geometry. Springer Verlag, (1983). Zbl0528.14013MR715605
- [L2] S. Lang (Ed.), Number Theory III: Diophantine Geometry. Springer Verlag, (1991). Zbl0744.14012MR1112552
- [M] D. Mumford, A Remark on Mordell's Conjecture. American Journal of Math.87, No. 4 (1965), 1007-1016. Zbl0151.27301MR186624
- [N1] M. Nakamaye, Dyson's Lemma and a Theorem of Esnault and Viehweg. Inv. Math.121 (1995), 355-377. Zbl0855.11036MR1346211
- [N2] M. Nakamaye, Dyson's Lemma with Moving Parts. Mathematische Annalen, 310 (1998), 161-168. Zbl0940.11026MR1600039
- [N3] M. Nakamaye, Intersection Theory and Diophantine Approximation. to appear, Journal of Algebraic Geometry. Zbl0953.11026MR1658224
- [S1] W. Schmidt, Diophantine Approximation, Springer Lecture Notes 785 (1980). Zbl0421.10019MR568710
- [S2] W. Schmidt, Diophantine Approximations and Diophantine Equations. Springer Lecture Notes 1467 (1991). Zbl0754.11020MR1176315
- [SE] J.-P. Serre, Lectures on the Mordell-Weil Theorem. Vieweg, (1990). Zbl0676.14005
- [Vi] C. Viola, On Dyson's lemma. Ann. Sc. Norm. Super. Pisa, 12 (1985), 105-135. Zbl0596.10032MR818804
- [V1] P. Vojta, Dyson's lemma for products of two curves of arbitrary genus. Inv. Math.98 (1989), 107-113. Zbl0666.10024MR1010157
- [V2] P. Vojta, Siegel's theorem in the compact case. Annals of Math.133 (1991), 509-548. Zbl0774.14019MR1109352
- [V3] P. Vojta, A generalization of theorems of Faltings and Thue-Siegel-Roth-Wirsing. Journal AMS, 4 (1992), 763-804. Zbl0778.11037MR1151542
- [V4] P. Vojta, Some applications of arithmetic algebraic geometry to diophantine approximations. Proceedings of the CIME Conference, nento, (1991), LNM 1553, Springer, ((1993)). Zbl0846.14009MR1338861
- [V5] P. Vojta, Integral points on subvarieties of semi-abelian varieties, I. Inv. Math.126 (1996), 133-181. Zbl1011.11040MR1408559

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.