On Dyson's lemma

Carlo Viola

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 1, page 105-135
  • ISSN: 0391-173X

How to cite

top

Viola, Carlo. "On Dyson's lemma." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.1 (1985): 105-135. <http://eudml.org/doc/83949>.

@article{Viola1985,
author = {Viola, Carlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rational approximations to algebraic numbers; number of zeros; Dyson lemma; effective results; polynomials in two variables},
language = {eng},
number = {1},
pages = {105-135},
publisher = {Scuola normale superiore},
title = {On Dyson's lemma},
url = {http://eudml.org/doc/83949},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Viola, Carlo
TI - On Dyson's lemma
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 1
SP - 105
EP - 135
LA - eng
KW - rational approximations to algebraic numbers; number of zeros; Dyson lemma; effective results; polynomials in two variables
UR - http://eudml.org/doc/83949
ER -

References

top
  1. [1] E. Bombieri, On the Thue-Siegel-Dyson theorem, Acta Math., 148 (1982), pp. 255-296. Zbl0505.10015MR666113
  2. [2] E. Bombieri - J. Mueller, On effective measures of irrationality for √ra/b and related numbers, J. Reine Angew. Math., 342 (1983), pp. 173-196. Zbl0516.10024
  3. [3] E. Brieskorn - H. Knörrer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981. Zbl0508.14018MR646612
  4. [4] F. Dyson, The approximation to algebraic numbers by rationals, Acta Math., 79 (1947), pp. 225-240. Zbl0030.02101MR23854
  5. [5] F. Enriques - O. Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, vol. 2, Zanichelli, Bologna, 1918. JFM46.0941.11
  6. [6] H. Esnault - E. Viehweg, Dyson's lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. (to appear). Zbl0545.10021
  7. [7] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. Zbl0328.32007MR419433
  8. [8] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., 61, Princeton Univ. Press, Princeton, 1968. Zbl0184.48405MR239612

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.