On Dyson's lemma

Carlo Viola

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1985)

  • Volume: 12, Issue: 1, page 105-135
  • ISSN: 0391-173X

How to cite

top

Viola, Carlo. "On Dyson's lemma." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 12.1 (1985): 105-135. <http://eudml.org/doc/83949>.

@article{Viola1985,
author = {Viola, Carlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {rational approximations to algebraic numbers; number of zeros; Dyson lemma; effective results; polynomials in two variables},
language = {eng},
number = {1},
pages = {105-135},
publisher = {Scuola normale superiore},
title = {On Dyson's lemma},
url = {http://eudml.org/doc/83949},
volume = {12},
year = {1985},
}

TY - JOUR
AU - Viola, Carlo
TI - On Dyson's lemma
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1985
PB - Scuola normale superiore
VL - 12
IS - 1
SP - 105
EP - 135
LA - eng
KW - rational approximations to algebraic numbers; number of zeros; Dyson lemma; effective results; polynomials in two variables
UR - http://eudml.org/doc/83949
ER -

References

top
  1. [1] E. Bombieri, On the Thue-Siegel-Dyson theorem, Acta Math., 148 (1982), pp. 255-296. Zbl0505.10015MR666113
  2. [2] E. Bombieri - J. Mueller, On effective measures of irrationality for √ra/b and related numbers, J. Reine Angew. Math., 342 (1983), pp. 173-196. Zbl0516.10024
  3. [3] E. Brieskorn - H. Knörrer, Ebene algebraische Kurven, Birkhäuser, Basel, 1981. Zbl0508.14018MR646612
  4. [4] F. Dyson, The approximation to algebraic numbers by rationals, Acta Math., 79 (1947), pp. 225-240. Zbl0030.02101MR23854
  5. [5] F. Enriques - O. Chisini, Lezioni sulla teoria geometrica delle equazioni e delle funzioni algebriche, vol. 2, Zanichelli, Bologna, 1918. JFM46.0941.11
  6. [6] H. Esnault - E. Viehweg, Dyson's lemma for polynomials in several variables (and the theorem of Roth), Invent. Math. (to appear). Zbl0545.10021
  7. [7] A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. Math., 32 (1976), pp. 1-31. Zbl0328.32007MR419433
  8. [8] J. Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud., 61, Princeton Univ. Press, Princeton, 1968. Zbl0184.48405MR239612

NotesEmbed ?

top

You must be logged in to post comments.