On inhomogeneous diophantine approximation with some quasi-periodic expressions, II
Journal de théorie des nombres de Bordeaux (1999)
- Volume: 11, Issue: 2, page 331-344
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topKomatsu, Takao. "On inhomogeneous diophantine approximation with some quasi-periodic expressions, II." Journal de théorie des nombres de Bordeaux 11.2 (1999): 331-344. <http://eudml.org/doc/248343>.
@article{Komatsu1999,
abstract = {We consider the values concerning\begin\{equation*\} \mathcal \{M\}(\theta , \phi ) = \liminf \_\{|q| \rightarrow \infty \} |q|||q^\theta - \phi || \end\{equation*\}where the continued fraction expansion of $\theta $ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying $\mathcal \{M\}(\theta , \phi ) = 0$.},
author = {Komatsu, Takao},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {331-344},
publisher = {Université Bordeaux I},
title = {On inhomogeneous diophantine approximation with some quasi-periodic expressions, II},
url = {http://eudml.org/doc/248343},
volume = {11},
year = {1999},
}
TY - JOUR
AU - Komatsu, Takao
TI - On inhomogeneous diophantine approximation with some quasi-periodic expressions, II
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 2
SP - 331
EP - 344
AB - We consider the values concerning\begin{equation*} \mathcal {M}(\theta , \phi ) = \liminf _{|q| \rightarrow \infty } |q|||q^\theta - \phi || \end{equation*}where the continued fraction expansion of $\theta $ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying $\mathcal {M}(\theta , \phi ) = 0$.
LA - eng
UR - http://eudml.org/doc/248343
ER -
References
top- [1] J.W.S. Cassels, Über limx→+∞x|ϑx + α — y|. Math. Ann.127 (1954), 288-304. Zbl0055.04401
- [2] T W. Cusick, A. M. Rockett and P. Szüsz, On inhomogeneous Diophantine approximation. J. Number Theory48 (1994), 259-283. Zbl0820.11042MR1293862
- [3] C.S. DavisOn some simple continued fractions connected with e. J. London Math. Soc.20 (1945), 194-198. Zbl0060.16111MR17394
- [4] R. DescombesSur la répartition des sommets d'une ligne polygonale régulière non fermée. Ann. Sci. École Norm Sup.73 (1956), 283-355. Zbl0072.03802MR86844
- [5] T. Komatsu On inhomogeneouscontinued fraction expansion and inhomogeneous Diophantine approximation. J. Number Theory62 (1997), 192-212. Zbl0878.11029MR1430009
- [6] T. KomatsuOn inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm. Acta Arith.86 (1998), 305-324. Zbl0930.11049MR1659089
- [7] T. KomatsuOn inhomogeneous Diophantine approximation with some quasi-periodic expressions. Acta Math. Hung.85 (1999), 303-322. Zbl0949.11035MR1724097
- [8] K.R. Matthews and R.F.C. WaltersSome properties of the continued fraction expansion of (m/n)e1/q. Proc. Cambridge Philos. Soc.67 (1970), 67-74. Zbl0188.10703MR252889
- [9] K. Nishioka, I. Shiokawa and J. TamuraArithmetical properties of a certain power series. J. Number Theory42 (1992), 61-87. Zbl0770.11039MR1176421
- [10] O. PerronDie Lehre von den Kettenbrüchen. Chelsea reprint of 1929 edition. Zbl0041.18206
- [11] V.T. SósOn the theory of Diophantine approximations, II. Acta Math. Acad. Sci. Hung.9 (1958), 229-241. Zbl0086.03902MR95164
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.