On inhomogeneous diophantine approximation with some quasi-periodic expressions, II

Takao Komatsu

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 2, page 331-344
  • ISSN: 1246-7405

Abstract

top
We consider the values concerning ( θ , φ ) = lim inf | q | | q | | | q θ - φ | | where the continued fraction expansion of θ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying ( θ , φ ) = 0 .

How to cite

top

Komatsu, Takao. "On inhomogeneous diophantine approximation with some quasi-periodic expressions, II." Journal de théorie des nombres de Bordeaux 11.2 (1999): 331-344. <http://eudml.org/doc/248343>.

@article{Komatsu1999,
abstract = {We consider the values concerning\begin\{equation*\} \mathcal \{M\}(\theta , \phi ) = \liminf \_\{|q| \rightarrow \infty \} |q|||q^\theta - \phi || \end\{equation*\}where the continued fraction expansion of $\theta $ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying $\mathcal \{M\}(\theta , \phi ) = 0$.},
author = {Komatsu, Takao},
journal = {Journal de théorie des nombres de Bordeaux},
language = {eng},
number = {2},
pages = {331-344},
publisher = {Université Bordeaux I},
title = {On inhomogeneous diophantine approximation with some quasi-periodic expressions, II},
url = {http://eudml.org/doc/248343},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Komatsu, Takao
TI - On inhomogeneous diophantine approximation with some quasi-periodic expressions, II
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 2
SP - 331
EP - 344
AB - We consider the values concerning\begin{equation*} \mathcal {M}(\theta , \phi ) = \liminf _{|q| \rightarrow \infty } |q|||q^\theta - \phi || \end{equation*}where the continued fraction expansion of $\theta $ has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying $\mathcal {M}(\theta , \phi ) = 0$.
LA - eng
UR - http://eudml.org/doc/248343
ER -

References

top
  1. [1] J.W.S. Cassels, Über limx→+∞x|ϑx + α — y|. Math. Ann.127 (1954), 288-304. Zbl0055.04401
  2. [2] T W. Cusick, A. M. Rockett and P. Szüsz, On inhomogeneous Diophantine approximation. J. Number Theory48 (1994), 259-283. Zbl0820.11042MR1293862
  3. [3] C.S. DavisOn some simple continued fractions connected with e. J. London Math. Soc.20 (1945), 194-198. Zbl0060.16111MR17394
  4. [4] R. DescombesSur la répartition des sommets d'une ligne polygonale régulière non fermée. Ann. Sci. École Norm Sup.73 (1956), 283-355. Zbl0072.03802MR86844
  5. [5] T. Komatsu On inhomogeneouscontinued fraction expansion and inhomogeneous Diophantine approximation. J. Number Theory62 (1997), 192-212. Zbl0878.11029MR1430009
  6. [6] T. KomatsuOn inhomogeneous Diophantine approximation and the Nishioka-Shiokawa-Tamura algorithm. Acta Arith.86 (1998), 305-324. Zbl0930.11049MR1659089
  7. [7] T. KomatsuOn inhomogeneous Diophantine approximation with some quasi-periodic expressions. Acta Math. Hung.85 (1999), 303-322. Zbl0949.11035MR1724097
  8. [8] K.R. Matthews and R.F.C. WaltersSome properties of the continued fraction expansion of (m/n)e1/q. Proc. Cambridge Philos. Soc.67 (1970), 67-74. Zbl0188.10703MR252889
  9. [9] K. Nishioka, I. Shiokawa and J. TamuraArithmetical properties of a certain power series. J. Number Theory42 (1992), 61-87. Zbl0770.11039MR1176421
  10. [10] O. PerronDie Lehre von den Kettenbrüchen. Chelsea reprint of 1929 edition. Zbl0041.18206
  11. [11] V.T. SósOn the theory of Diophantine approximations, II. Acta Math. Acad. Sci. Hung.9 (1958), 229-241. Zbl0086.03902MR95164

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.