An effective Version of Faltings' Product Theorem.
We study effectively the simultaneous approximation of n-1 different complex numbers by conjugate algebraic integers of degree n over ℤ(√-1). This is a refinement of a result of Motzkin [2] (see also [3], p. 50) who has no estimate for the remaining conjugate. If the n-1 different complex numbers lie symmetrically about the real axis, then ℤ(√-1) can be replaced by ℤ. In Section 1 we prove an effective version of a Kronecker approximation theorem; we start with an idea of H....
For an irrational real number and real number we consider the inhomogeneous approximation constantvia the semi-regular negative continued fraction expansion of
We obtain the values concerning using the algorithm by Nishioka, Shiokawa and Tamura. In application, we give the values (θ,1/2), (θ,1/a), (θ,1/√(ab(ab+4))) and so on when θ = (√(ab(ab+4)) - ab)/(2a) = [0;a,b,a,b,...].
We consider the values concerningwhere the continued fraction expansion of has a quasi-periodic form. In particular, we treat the cases so that each quasi-periodic form includes no constant. Furthermore, we give some general conditions satisfying .
On donne des versions raffinées effectives du théorème du produit de G. Faltings et de son principal corollaire. Le théorème montre que si l’ensemble des zéros d’indice d’un polynôme multihomogène a une composante commune avec l’ensemble des zéros d’indice alors cette composante, sous-variété d’un produit d’espaces projectifs, est elle-même un produit à condition que les rapports des degrés de soient grands en fonction de . Le corollaire le plus utile implique que, sous une condition plus...