A survey of computational class field theory
Journal de théorie des nombres de Bordeaux (1999)
- Volume: 11, Issue: 1, page 1-13
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCohen, Henri. "A survey of computational class field theory." Journal de théorie des nombres de Bordeaux 11.1 (1999): 1-13. <http://eudml.org/doc/248346>.
@article{Cohen1999,
abstract = {We give a survey of computational class field theory. We first explain how to compute ray class groups and discriminants of the corresponding ray class fields. We then explain the three main methods in use for computing an equation for the class fields themselves: Kummer theory, Stark units and complex multiplication. Using these techniques we can construct many new number fields, including fields of very small root discriminant.},
author = {Cohen, Henri},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {class field theory; complex multiplication; Hilbert's class field; Ray class field theory},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Université Bordeaux I},
title = {A survey of computational class field theory},
url = {http://eudml.org/doc/248346},
volume = {11},
year = {1999},
}
TY - JOUR
AU - Cohen, Henri
TI - A survey of computational class field theory
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 1
EP - 13
AB - We give a survey of computational class field theory. We first explain how to compute ray class groups and discriminants of the corresponding ray class fields. We then explain the three main methods in use for computing an equation for the class fields themselves: Kummer theory, Stark units and complex multiplication. Using these techniques we can construct many new number fields, including fields of very small root discriminant.
LA - eng
KW - class field theory; complex multiplication; Hilbert's class field; Ray class field theory
UR - http://eudml.org/doc/248346
ER -
References
top- [1] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp.55 (1990), p. 355-380. Zbl0701.11075MR1023756
- [2] G. Birkhoff, Subgroups of Abelian groups, Proc. Lond. Math. Soc. (2) 38 (1934-5), p. 385-401. Zbl0010.34304JFM60.0893.03
- [3] L. Butler, Subgroup Lattices and Symmetric Functions, Memoirs of the A.M.S. 539 (1994). Zbl0813.05067MR1223236
- [4] H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag, Berlin, Heidelberg, New-York (1993). Zbl0786.11071MR1228206
- [5] H. Cohen, Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp.65 (1996), p. 1681-1699. Zbl0853.11100MR1361805
- [6] H. Cohen and F. Diaz y DiazA polynomial reduction algorithm, Sém. Th. des Nombres Bordeaux (série 2), 3 (1991), p. 351-360. Zbl0758.11053MR1149802
- [7] H. Cohen, F. Diaz y Diaz and M. Olivier, Subexponential algorithms for class and unit group computations, J. Symb. Comp.24 (1997), p. 433-441. Zbl0880.68067MR1484490
- [8] H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic methods for finitely generated Abelian groups, J. Symb. Comp., to appear. Zbl1007.20031
- [9] H. Cohen, F. Diaz y Diaz and M. Olivier, Computing ray class groups, conductors and discriminants, Math. Comp.67 (1998), p. 773-795. Zbl0929.11064MR1443117
- [10] H. Cohen and X. Roblot, Computing the Hilbert class field of real quadratic fields, Math. Comp., to appear. Zbl1042.11075MR1651747
- [11] C. Fieker, Computing class fields via the Artin map, J. Symb. Comput., to appear. Zbl0982.11074MR1826583
- [12] A. Gee, Class invariants by Shimura's reciprocity law, J. Théor. Nombres Bordeaux11 (1999), 45-72. Zbl0957.11048MR1730432
- [13] E. Hecke, Lectures on the theory of algebraic numbers GTM 77, Springer-Verlag, Berlin, Heidelberg, New York (1981). Zbl0504.12001MR638719
- [14] A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier35, 2 (1985), p. 83-106. Zbl0546.12005MR786536
- [15] A. Leutbecher and G. Niklasch, On cliques of exceptional units and Lenstra's construction of Euclidean fields, TUM Math. Inst. preprint M8705 (1987).
- [16] J. Martinet, Petits discriminants des corps de nombres, Journées arithmétiques1980 (J.V. Armitage, Ed.), London Math. Soc. Lecture Notes Ser. 56 (1982), p. 151-193. Zbl0491.12005MR697261
- [17] N. Nakagoshi, The structure of the multiplicative group of residue classes modulo PN+1, Nagoya Math. J.73 (1979), p. 41-60. Zbl0393.12023MR524007
- [18] X.-F. Roblot, Unités de Stark et corps de classes de Hilbert, C. R. Acad. Sci. Paris323 (1996), p. 1165-1168. Zbl0871.11080MR1423444
- [19] X.-F. Roblot, Stark's Conjectures and Hilbert's Twelfth Problem, J. Number Theory, submitted, and Algorithmes de Factorisation dans les Extensions Relatives et Applications de la Conjecture de Stark à la Construction des Corps de Classes de Rayon, Thesis, Université Bordeaux I (1997).
- [20] R. Schertz, Zur expliciten Berechnung von Ganzheitbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper, J. Number Theory34 (1990), p. 41-53. Zbl0701.11059MR1039766
- [21] R. Schertz, Problèmes de Construction en Multiplication Complexe, Sém. Th. des Nombres Bordeaux (Séries 2), 4 (1992), p. 239-262. Zbl0797.11083MR1208864
- [22] R. Schertz, Construction of ray class fields by elliptic units, J. Th. des Nombres Bordeaux9 (1997), p. 383-394. Zbl0902.11047MR1617405
- [23] N. Yui and D. Zagier, On the singular values of Weber modular functions, Math. Comp.66 (1997), p. 1645-1662. Zbl0892.11022MR1415803
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.