A survey of computational class field theory

Henri Cohen

Journal de théorie des nombres de Bordeaux (1999)

  • Volume: 11, Issue: 1, page 1-13
  • ISSN: 1246-7405

Abstract

top
We give a survey of computational class field theory. We first explain how to compute ray class groups and discriminants of the corresponding ray class fields. We then explain the three main methods in use for computing an equation for the class fields themselves: Kummer theory, Stark units and complex multiplication. Using these techniques we can construct many new number fields, including fields of very small root discriminant.

How to cite

top

Cohen, Henri. "A survey of computational class field theory." Journal de théorie des nombres de Bordeaux 11.1 (1999): 1-13. <http://eudml.org/doc/248346>.

@article{Cohen1999,
abstract = {We give a survey of computational class field theory. We first explain how to compute ray class groups and discriminants of the corresponding ray class fields. We then explain the three main methods in use for computing an equation for the class fields themselves: Kummer theory, Stark units and complex multiplication. Using these techniques we can construct many new number fields, including fields of very small root discriminant.},
author = {Cohen, Henri},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {class field theory; complex multiplication; Hilbert's class field; Ray class field theory},
language = {eng},
number = {1},
pages = {1-13},
publisher = {Université Bordeaux I},
title = {A survey of computational class field theory},
url = {http://eudml.org/doc/248346},
volume = {11},
year = {1999},
}

TY - JOUR
AU - Cohen, Henri
TI - A survey of computational class field theory
JO - Journal de théorie des nombres de Bordeaux
PY - 1999
PB - Université Bordeaux I
VL - 11
IS - 1
SP - 1
EP - 13
AB - We give a survey of computational class field theory. We first explain how to compute ray class groups and discriminants of the corresponding ray class fields. We then explain the three main methods in use for computing an equation for the class fields themselves: Kummer theory, Stark units and complex multiplication. Using these techniques we can construct many new number fields, including fields of very small root discriminant.
LA - eng
KW - class field theory; complex multiplication; Hilbert's class field; Ray class field theory
UR - http://eudml.org/doc/248346
ER -

References

top
  1. [1] E. Bach, Explicit bounds for primality testing and related problems, Math. Comp.55 (1990), p. 355-380. Zbl0701.11075MR1023756
  2. [2] G. Birkhoff, Subgroups of Abelian groups, Proc. Lond. Math. Soc. (2) 38 (1934-5), p. 385-401. Zbl0010.34304JFM60.0893.03
  3. [3] L. Butler, Subgroup Lattices and Symmetric Functions, Memoirs of the A.M.S. 539 (1994). Zbl0813.05067MR1223236
  4. [4] H. Cohen, A Course in Computational Algebraic Number Theory, GTM 138, Springer-Verlag, Berlin, Heidelberg, New-York (1993). Zbl0786.11071MR1228206
  5. [5] H. Cohen, Hermite and Smith normal form algorithms over Dedekind domains, Math. Comp.65 (1996), p. 1681-1699. Zbl0853.11100MR1361805
  6. [6] H. Cohen and F. Diaz y DiazA polynomial reduction algorithm, Sém. Th. des Nombres Bordeaux (série 2), 3 (1991), p. 351-360. Zbl0758.11053MR1149802
  7. [7] H. Cohen, F. Diaz y Diaz and M. Olivier, Subexponential algorithms for class and unit group computations, J. Symb. Comp.24 (1997), p. 433-441. Zbl0880.68067MR1484490
  8. [8] H. Cohen, F. Diaz y Diaz and M. Olivier, Algorithmic methods for finitely generated Abelian groups, J. Symb. Comp., to appear. Zbl1007.20031
  9. [9] H. Cohen, F. Diaz y Diaz and M. Olivier, Computing ray class groups, conductors and discriminants, Math. Comp.67 (1998), p. 773-795. Zbl0929.11064MR1443117
  10. [10] H. Cohen and X. Roblot, Computing the Hilbert class field of real quadratic fields, Math. Comp., to appear. Zbl1042.11075MR1651747
  11. [11] C. Fieker, Computing class fields via the Artin map, J. Symb. Comput., to appear. Zbl0982.11074MR1826583
  12. [12] A. Gee, Class invariants by Shimura's reciprocity law, J. Théor. Nombres Bordeaux11 (1999), 45-72. Zbl0957.11048MR1730432
  13. [13] E. Hecke, Lectures on the theory of algebraic numbers GTM 77, Springer-Verlag, Berlin, Heidelberg, New York (1981). Zbl0504.12001MR638719
  14. [14] A. Leutbecher, Euclidean fields having a large Lenstra constant, Ann. Inst. Fourier35, 2 (1985), p. 83-106. Zbl0546.12005MR786536
  15. [15] A. Leutbecher and G. Niklasch, On cliques of exceptional units and Lenstra's construction of Euclidean fields, TUM Math. Inst. preprint M8705 (1987). 
  16. [16] J. Martinet, Petits discriminants des corps de nombres, Journées arithmétiques1980 (J.V. Armitage, Ed.), London Math. Soc. Lecture Notes Ser. 56 (1982), p. 151-193. Zbl0491.12005MR697261
  17. [17] N. Nakagoshi, The structure of the multiplicative group of residue classes modulo PN+1, Nagoya Math. J.73 (1979), p. 41-60. Zbl0393.12023MR524007
  18. [18] X.-F. Roblot, Unités de Stark et corps de classes de Hilbert, C. R. Acad. Sci. Paris323 (1996), p. 1165-1168. Zbl0871.11080MR1423444
  19. [19] X.-F. Roblot, Stark's Conjectures and Hilbert's Twelfth Problem, J. Number Theory, submitted, and Algorithmes de Factorisation dans les Extensions Relatives et Applications de la Conjecture de Stark à la Construction des Corps de Classes de Rayon, Thesis, Université Bordeaux I (1997). 
  20. [20] R. Schertz, Zur expliciten Berechnung von Ganzheitbasen in Strahlklassenkörpern über einem imaginär-quadratischen Zahlkörper, J. Number Theory34 (1990), p. 41-53. Zbl0701.11059MR1039766
  21. [21] R. Schertz, Problèmes de Construction en Multiplication Complexe, Sém. Th. des Nombres Bordeaux (Séries 2), 4 (1992), p. 239-262. Zbl0797.11083MR1208864
  22. [22] R. Schertz, Construction of ray class fields by elliptic units, J. Th. des Nombres Bordeaux9 (1997), p. 383-394. Zbl0902.11047MR1617405
  23. [23] N. Yui and D. Zagier, On the singular values of Weber modular functions, Math. Comp.66 (1997), p. 1645-1662. Zbl0892.11022MR1415803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.