Displaying similar documents to “A survey of computational class field theory”

The class number one problem for some non-abelian normal CM-fields of degree 24

F. Lemmermeyer, S. Louboutin, R. Okazaki (1999)

Journal de théorie des nombres de Bordeaux

Similarity:

We determine all the non-abelian normal CM-fields of degree 24 with class number one, provided that the Galois group of their maximal real subfields is isomorphic to 𝒜 4 , the alternating group of degree 4 and order 12 . There are two such fields with Galois group 𝒜 4 × 𝒞 2 (see Theorem 14) and at most one with Galois group SL 2 ( 𝔽 3 ) (see Theorem 18); if the generalized Riemann hypothesis is true, then this last field has class number 1 .

The imaginary abelian number fields with class numbers equal to their genus class numbers

Ku-Young Chang, Soun-Hi Kwon (2000)

Journal de théorie des nombres de Bordeaux

Similarity:

We know that there exist only finitely many imaginary abelian number fields with class numbers equal to their genus class numbers. Such non-quadratic cyclic number fields are completely determined in [Lou2,4] and [CK]. In this paper we determine all non-cyclic abelian number fields with class numbers equal to their genus class numbers, thus the one class in each genus problem is solved, except for the imaginary quadratic number fields.