Euclidean fields having a large Lenstra constant

Armin Leutbecher

Annales de l'institut Fourier (1985)

  • Volume: 35, Issue: 2, page 83-106
  • ISSN: 0373-0956

Abstract

top
Based on a method of H. W. Lenstra Jr. in this note 143 new Euclidean number fields are given of degree n = 7 , 8 , 9 and 10 and of unit rank 5 . The search for these examples also revealed several other fields of small discriminant compared with the lower bounds of Odlyzko.

How to cite

top

Leutbecher, Armin. "Euclidean fields having a large Lenstra constant." Annales de l'institut Fourier 35.2 (1985): 83-106. <http://eudml.org/doc/74679>.

@article{Leutbecher1985,
abstract = {Based on a method of H. W. Lenstra Jr. in this note 143 new Euclidean number fields are given of degree $n=7,8,9$ and 10 and of unit rank $\le 5$. The search for these examples also revealed several other fields of small discriminant compared with the lower bounds of Odlyzko.},
author = {Leutbecher, Armin},
journal = {Annales de l'institut Fourier},
keywords = {Lenstra constant; Euclidean number fields; degree and 10; unit rank; small discriminant; lower bounds of Odlyzko},
language = {eng},
number = {2},
pages = {83-106},
publisher = {Association des Annales de l'Institut Fourier},
title = {Euclidean fields having a large Lenstra constant},
url = {http://eudml.org/doc/74679},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Leutbecher, Armin
TI - Euclidean fields having a large Lenstra constant
JO - Annales de l'institut Fourier
PY - 1985
PB - Association des Annales de l'Institut Fourier
VL - 35
IS - 2
SP - 83
EP - 106
AB - Based on a method of H. W. Lenstra Jr. in this note 143 new Euclidean number fields are given of degree $n=7,8,9$ and 10 and of unit rank $\le 5$. The search for these examples also revealed several other fields of small discriminant compared with the lower bounds of Odlyzko.
LA - eng
KW - Lenstra constant; Euclidean number fields; degree and 10; unit rank; small discriminant; lower bounds of Odlyzko
UR - http://eudml.org/doc/74679
ER -

References

top
  1. [1] F. DIAZ y DIAZ, Valeurs minima du discriminant des corps de degré 7 ayant une seule place réelle, C.R.A.S., Paris, 296 (1983), 137-139. Zbl0527.12007MR84i:12004
  2. [2] F. DIAZ y DIAZ, Valeurs minima du discriminant pour certains types de corps de degré 7, Ann. de l'Inst. Fourier, 34-3 (1984), 29-38. Zbl0546.12004MR86d:11091
  3. [3] S. LANG, Integral points on curves, Publ. IHES, (1960), N° 6. Zbl0112.13402MR24 #A86
  4. [4] H. W. LENSTRA jr., Euclidean number fields of large degree, Invent. Math., 38 (1977), 237-254. Zbl0328.12007MR55 #2836
  5. [5] H. W. LENSTRA jr., Euclidean number fields, Math. Intelligencer 2, no. 1 (1979), 6-15 ; no. 2 (1980), 73-77, 99-103. Zbl0433.12004MR81m:12001
  6. [6] A. LEUTBECHER and J. MARTINET, Lenstra's constant and Euclidean number fields, Astérisque, 94 (1982), 87-131. Zbl0499.12013MR85b:11090
  7. [7] F. J. van der LINDEN, Euclidean rings with two infinite primes, Thesis, Amsterdam, (1984). Zbl0571.12002
  8. [8] J. MARTINET, Petits discriminants des corps de nombre, J. V. Armitage (éd.), Journées Arithmétiques 1980, Cambridge University Press. LMS Lecture Notes séries, 56 (1982), 151-193. Zbl0491.12005MR84g:12009
  9. [9] T. NAGELL, Sur un type particulier d'unités algébriques, Ark. Mat., 8 (1969), 163-184. Zbl0213.06901MR42 #3064
  10. [10] M. POHST, On the computation of number fields of small discriminants including the minimum discriminants of sixth degree fields, J. of Number Th., 14 (1982), 99-117. Zbl0478.12005MR83g:12009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.