Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
Commentationes Mathematicae Universitatis Carolinae (1999)
- Volume: 40, Issue: 4, page 651-663
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topRagusa, Maria Alessandra. "Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis." Commentationes Mathematicae Universitatis Carolinae 40.4 (1999): 651-663. <http://eudml.org/doc/248421>.
@article{Ragusa1999,
abstract = {In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class $H^\{1,p\}_0(\Omega )$ for all $1<p<\infty $ and, as a consequence, the Hölder regularity of the solution $u$. $\mathcal \{L\}$ is an elliptic second order operator with discontinuous coefficients $(VMO)$ and the lower order terms belong to suitable Lebesgue spaces.},
author = {Ragusa, Maria Alessandra},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {elliptic equations; Morrey spaces; elliptic equations; Morrey spaces},
language = {eng},
number = {4},
pages = {651-663},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis},
url = {http://eudml.org/doc/248421},
volume = {40},
year = {1999},
}
TY - JOUR
AU - Ragusa, Maria Alessandra
TI - Elliptic boundary value problem in Vanishing Mean Oscillation hypothesis
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1999
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 40
IS - 4
SP - 651
EP - 663
AB - In this note the well-posedness of the Dirichlet problem (1.2) below is proved in the class $H^{1,p}_0(\Omega )$ for all $1<p<\infty $ and, as a consequence, the Hölder regularity of the solution $u$. $\mathcal {L}$ is an elliptic second order operator with discontinuous coefficients $(VMO)$ and the lower order terms belong to suitable Lebesgue spaces.
LA - eng
KW - elliptic equations; Morrey spaces; elliptic equations; Morrey spaces
UR - http://eudml.org/doc/248421
ER -
References
top- Agmon S., Lectures on Elliptic boundary Value Problems, Van Nostrand, N.J., 1965. Zbl0142.37401MR0178246
- Browder F.E., Strongly elliptic systems of differential equations, in: Contributions to the Theory of Partial Differential Equations, Princeton University Press, Princeton N.J., 1954, pp.15-51. Zbl0057.32901MR0067306
- Bers L., Schechter M., Elliptic Equations In Partial Differential Equations, Interscience, New York, 1964, pp.131-299. MR0165224
- Chiarenza F., Frasca M., Longo P., Interior estimates for non-divergence elliptic equations with discontinuous coefficients, Ricerche Mat. 40 (1991), 149-168. (1991) MR1191890
- Chiarenza F., Frasca M., Longo P., -solvability of the Dirichlet problem for nondivergence elliptic equations with coefficients, Trans. Amer. Math. Soc. 336 (1993), 841-853. (1993) MR1088476
- Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. of Math. 103 (1976), 611-635. (1976) Zbl0326.32011MR0412721
- De Giorgi E., Sulla differenziabilita' e l'analiticita' delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. 3 (1957), 25-43. (1957) Zbl0084.31901MR0093649
- Di Fazio G., Estimates for divergence form elliptic equations with discontinuous coefficients, Boll. U.M.I. (7) 10-A (1996), 409-420. (1996) MR1405255
- Friedman A., Partial Differential Equations, Holt, Rinehart and Winston, New York, 1969. Zbl1121.46001MR0445088
- Friedrichs K.O., The identity of weak and strong extensions of differential operators, Trans. Amer. Math. Soc. 55 (1944), 132-151. (1944) Zbl0061.26201MR0009701
- Friedrichs K.O., On the differentiability of the solutions of linear elliptic equations, Comm. Pure Appl. Math. 6 (1953), 299-326. (1953) MR0058828
- Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, 1983. Zbl1042.35002MR0737190
- Garding L., Dirichlet's problem for linear elliptic partial differential equations, Math. Scand. 1 (1953), 55-72. (1953) Zbl0053.39101MR0064979
- John F., Nirenberg L., On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415-426. (1961) Zbl0102.04302MR0131498
- Ladyzenskaya O.A., Uraltśeva N.N., Linear and Quasilinear Elliptic Equations, English Translation: Academic Press, New York, 2nd Russian ed., 1973.
- Lax P.D., On Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl. Math. 8 (1955), 615-633. (1955) Zbl0067.07502MR0078558
- Miranda C., Partial Differential Equations of Elliptic Type, second revised edition, Springer Verlag, 1970. Zbl0198.14101MR0284700
- Miranda C., Sulle equazioni ellittiche del secondo ordine di tipo non variazionale, a coefficienti discontinui, Annali di Matematica 63 (1963), 353-386. (1963) Zbl0156.34001MR0170090
- Miranda C., Alcune osservazioni sulla maggiorazione in delle soluzioni deboli delle equazioni ellittiche del secondo ordine, Annali di Matematica 61 (1963), 151-170. (1963) MR0177187
- Neri U., Some properties of bounded mean oscillation, Studia Math. 41 (1977), 63-75. (1977) MR0445210
- Nirenberg L., On nonlinear elliptic partial differential equations and Hölder continuity, Comm. Pure Appl. Math. 6 (1953), 103-156. (1953) Zbl0050.09801MR0064986
- Nirenberg L., Remarks on strongly elliptic partial differential equations, Comm. Pure Appl. Math. 5 (1955), 649-675. (1955) Zbl0067.07602MR0075415
- Sarason D., On functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391-405. (1975) MR0377518
- Stampacchia G., Contributi alla regolarizzazione delle soluzioni dei problemi al contorno per equazioni del secondo ordine ellittiche, Ann. Scuola Norm. Sup. Pisa (3) 12 (1958), 223-245. (1958) Zbl0082.09701MR0125313
- Spampacchia G., I problemi al contorno per le equazioni differentiali di tipo ellittico, Atti VI Congr. Un. Mat. Ital., Napoli Edizioni Cremonese, 1960, pp.21-44. MR0123807
- Stampacchia G., Le probléme de Dirichlet pour les équations elliptiques du second ordre á coefficients discontinuous, Ann. Inst. Fourier 15 (1965), 189-258. (1965) MR0192177
- Stampacchia G., Equations elliptiques du second ordre á coefficients discontinues, Séminaire de Mathématiques Supérieures 16, Les Presses de l'Université de Montréal, 1966. MR0251373
- Trudinger N.S., Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 265-308. (1973) Zbl0279.35025MR0369884
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.