Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes

Yuri Bilu; Yann Bugeaud

Journal de théorie des nombres de Bordeaux (2000)

  • Volume: 12, Issue: 1, page 13-23
  • ISSN: 1246-7405

Abstract

top
We show that the Liouville-Baker-Feldman inequality | α - y / x | eff x γ - n easily follows from an estimate for linear forms in two logarithms.

How to cite

top

Bilu, Yuri, and Bugeaud, Yann. "Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes." Journal de théorie des nombres de Bordeaux 12.1 (2000): 13-23. <http://eudml.org/doc/248497>.

@article{Bilu2000,
abstract = {Nous montrons que l’inégalité de Liouville-Baker-Feldman $| \alpha - y/x| \gg _\{\mathrm \{eff\}\} x^\{\gamma -n\}$ est une conséquence facile d’une minoration de formes linéaires en deux logarithmes.},
author = {Bilu, Yuri, Bugeaud, Yann},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {measure of linear independence; logarithms of algebraic numbers; measures of linear independence for two logarithms; Schneider's transcendence method},
language = {fre},
number = {1},
pages = {13-23},
publisher = {Université Bordeaux I},
title = {Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes},
url = {http://eudml.org/doc/248497},
volume = {12},
year = {2000},
}

TY - JOUR
AU - Bilu, Yuri
AU - Bugeaud, Yann
TI - Démonstration du théorème de Baker-Feldman via les formes linéaires en deux logarithmes
JO - Journal de théorie des nombres de Bordeaux
PY - 2000
PB - Université Bordeaux I
VL - 12
IS - 1
SP - 13
EP - 23
AB - Nous montrons que l’inégalité de Liouville-Baker-Feldman $| \alpha - y/x| \gg _{\mathrm {eff}} x^{\gamma -n}$ est une conséquence facile d’une minoration de formes linéaires en deux logarithmes.
LA - fre
KW - measure of linear independence; logarithms of algebraic numbers; measures of linear independence for two logarithms; Schneider's transcendence method
UR - http://eudml.org/doc/248497
ER -

References

top
  1. [1] A. Baker, Linear forms in the logarithms of algebraic numbers I-IV. Mathematika13 (1966), 204-216; 14 (1967), 102-107 et 220-224; 15 (1968), 204-216. Zbl0161.05201MR258756
  2. [2] A. Baker, Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms. Phil. Trans. R. Soc. London Ser.A263 (1967 -68), 173-191. Zbl0157.09702MR228424
  3. [3] A. Baker, A sharpening of the bounds for linear forms in logarithms I-III. Acta Arith.21 (1972), 117-129; 24 (1973), 33-36; 27 (1975), 247-252. Zbl0301.10030
  4. [4] A. Baker, G. Wüstholz, Logarithmic forms and group varieties. J. Reine Angew. Math.442 (1993), 19-62. Zbl0788.11026MR1234835
  5. [5] E. Bombieri, Effective Diophantine Approximation on Gm. Ann. Scuola Norm. Sup. Pisa Cl. Sci.20 (1993), 61-89. Zbl0774.11034MR1215999
  6. [6] E. Bombieri, P.B. Cohen, Effective Diophantine Approximation on (Gm, II. Ann. Scuola Norm. Sup. Pisa Cl. Sci.24 (1997), 205-225. Zbl0912.11028MR1487954
  7. [7] Y. Bugeaud, Bornes effectives pour les solutions des équations en S-unités et des équations de Thue-Mahler. J. Number Theory71 (1998), 227-244. Zbl0926.11015MR1633809
  8. [8] Y. Bugeaud, K. Gyôry, Bounds for the solutions of Thue-Mahler equations and norm form equations. Acta Arith.74 (1996), 273-292. Zbl0861.11024MR1373714
  9. [9] N.I. Feldman, Improved estimate for a linear form of the logarithms of algebraic numbers, (en russe). Mat. Sb.77 (1968), 256-270. Également: Math. USSR. Sb.6 (1968) 393-406. Zbl0235.10018MR232736
  10. [10] N.I. Feldman, An effective refinement of the exponent in Liouville's theorem, (en russe). Iz. Akad. Nauk SSSR, Ser. Mat.35 (1971), 973-990. Également: Math. USSR. Izv.5 (1971) 985-1002. Zbl0259.10031MR289418
  11. [11] M. Laurent, Linear forms in two logarithms and interpolation determinants. Acta Arith.66 (1994), 181-199. Zbl0801.11034MR1276987
  12. [12] M. Laurent, M. Mignotte, Y. Nesterenko, Formes linéaires en deux logarithmes et déterminants d'interpolation. J. Number Theory55 (1995), 285-321. Zbl0843.11036MR1366574
  13. [13] M. Waldschmidt, Minorations de combinaisons linéaires de logarithmes de nombres algébriques. Canadian J. Math.45 (1993), 176-224. Zbl0774.11036MR1200327

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.