Artin's primitive root conjecture for quadratic fields

Hans Roskam

Journal de théorie des nombres de Bordeaux (2002)

  • Volume: 14, Issue: 1, page 287-324
  • ISSN: 1246-7405

Abstract

top
Fix an element α in a quadratic field K . Define S as the set of rational primes p , for which α has maximal order modulo p . Under the assumption of the generalized Riemann hypothesis, we show that S has a density. Moreover, we give necessary and sufficient conditions for the density of S to be positive.

How to cite

top

Roskam, Hans. "Artin's primitive root conjecture for quadratic fields." Journal de théorie des nombres de Bordeaux 14.1 (2002): 287-324. <http://eudml.org/doc/248915>.

@article{Roskam2002,
abstract = {Fix an element $\alpha $ in a quadratic field $K$. Define $S$ as the set of rational primes $p$, for which $\alpha $ has maximal order modulo $p$. Under the assumption of the generalized Riemann hypothesis, we show that $S$ has a density. Moreover, we give necessary and sufficient conditions for the density of $S$ to be positive.},
author = {Roskam, Hans},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Artin's conjecture; primitive roots; quadratic fields; generalized Riemann hypothesis},
language = {eng},
number = {1},
pages = {287-324},
publisher = {Université Bordeaux I},
title = {Artin's primitive root conjecture for quadratic fields},
url = {http://eudml.org/doc/248915},
volume = {14},
year = {2002},
}

TY - JOUR
AU - Roskam, Hans
TI - Artin's primitive root conjecture for quadratic fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 287
EP - 324
AB - Fix an element $\alpha $ in a quadratic field $K$. Define $S$ as the set of rational primes $p$, for which $\alpha $ has maximal order modulo $p$. Under the assumption of the generalized Riemann hypothesis, we show that $S$ has a density. Moreover, we give necessary and sufficient conditions for the density of $S$ to be positive.
LA - eng
KW - Artin's conjecture; primitive roots; quadratic fields; generalized Riemann hypothesis
UR - http://eudml.org/doc/248915
ER -

References

top
  1. [1] E. Artin, The collected papers of Emil Artin, (eds S. Lang, J. Tate). Addison-Wesley, 1965. Zbl0146.00101MR176888
  2. [2] H. Bilharz, Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann.114 (1937), 476-492. Zbl0016.34301MR1513151JFM63.0099.01
  3. [3] G. Cooke, P.J. Weinberger, On the construction of division chains in algebraic number fields, with applications to SL2. Commun. Algebra3 (1975), 481-524. Zbl0315.12001MR387251
  4. [4] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math.42 (1977), 201-224. Zbl0362.12012MR480413
  5. [5] C. Hooley, On Artin's conjecture. J. Reine Angew. Math.225 (1967), 209-220. Zbl0221.10048MR207630
  6. [6] P. Moree, Approximation of singular series and automata. Manuscripta Math.101 (2000), 385-399. Zbl1007.11084MR1751040
  7. [7] M. Ram Murty, On Artin's Conjecture. J. Number Theory16 (1983), 147-168. Zbl0526.12010MR698163
  8. [8] H. Roskam, A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory81 (2000), 93-109. Errata in J. Number Theory85 (2000), 108. Zbl1049.11125MR1743503
  9. [9] H. ROSKAM Prime divisorsof linear recurrences and Artin's primitive root conjecture for number fields. J. Théor. Nombres Bordeaux13 (2001), 303-314. Zbl1044.11005MR1838089
  10. [10] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math.54 (1981), 323-401. Zbl0496.12011MR644559
  11. [11] J.-P. Serre, Local Fields (2nd corrected printing). Springer-Verlag, New York, 1995. MR554237
  12. [12] P.J. Weinberger, On euclidean rings of algebraic integers. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), 321-332. Amer. Math. Soc., Providence, R. I., 1973. Zbl0287.12012MR337902

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.