Artin's primitive root conjecture for quadratic fields
Journal de théorie des nombres de Bordeaux (2002)
- Volume: 14, Issue: 1, page 287-324
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRoskam, Hans. "Artin's primitive root conjecture for quadratic fields." Journal de théorie des nombres de Bordeaux 14.1 (2002): 287-324. <http://eudml.org/doc/248915>.
@article{Roskam2002,
abstract = {Fix an element $\alpha $ in a quadratic field $K$. Define $S$ as the set of rational primes $p$, for which $\alpha $ has maximal order modulo $p$. Under the assumption of the generalized Riemann hypothesis, we show that $S$ has a density. Moreover, we give necessary and sufficient conditions for the density of $S$ to be positive.},
author = {Roskam, Hans},
journal = {Journal de théorie des nombres de Bordeaux},
keywords = {Artin's conjecture; primitive roots; quadratic fields; generalized Riemann hypothesis},
language = {eng},
number = {1},
pages = {287-324},
publisher = {Université Bordeaux I},
title = {Artin's primitive root conjecture for quadratic fields},
url = {http://eudml.org/doc/248915},
volume = {14},
year = {2002},
}
TY - JOUR
AU - Roskam, Hans
TI - Artin's primitive root conjecture for quadratic fields
JO - Journal de théorie des nombres de Bordeaux
PY - 2002
PB - Université Bordeaux I
VL - 14
IS - 1
SP - 287
EP - 324
AB - Fix an element $\alpha $ in a quadratic field $K$. Define $S$ as the set of rational primes $p$, for which $\alpha $ has maximal order modulo $p$. Under the assumption of the generalized Riemann hypothesis, we show that $S$ has a density. Moreover, we give necessary and sufficient conditions for the density of $S$ to be positive.
LA - eng
KW - Artin's conjecture; primitive roots; quadratic fields; generalized Riemann hypothesis
UR - http://eudml.org/doc/248915
ER -
References
top- [1] E. Artin, The collected papers of Emil Artin, (eds S. Lang, J. Tate). Addison-Wesley, 1965. Zbl0146.00101MR176888
- [2] H. Bilharz, Primdivisoren mit vorgegebener Primitivwurzel. Math. Ann.114 (1937), 476-492. Zbl0016.34301MR1513151JFM63.0099.01
- [3] G. Cooke, P.J. Weinberger, On the construction of division chains in algebraic number fields, with applications to SL2. Commun. Algebra3 (1975), 481-524. Zbl0315.12001MR387251
- [4] H.W. Lenstra, JR, On Artin's conjecture and Euclid's algorithm in global fields. Inv. Math.42 (1977), 201-224. Zbl0362.12012MR480413
- [5] C. Hooley, On Artin's conjecture. J. Reine Angew. Math.225 (1967), 209-220. Zbl0221.10048MR207630
- [6] P. Moree, Approximation of singular series and automata. Manuscripta Math.101 (2000), 385-399. Zbl1007.11084MR1751040
- [7] M. Ram Murty, On Artin's Conjecture. J. Number Theory16 (1983), 147-168. Zbl0526.12010MR698163
- [8] H. Roskam, A quadratic analogue of Artin's conjecture on primitive roots. J. Number Theory81 (2000), 93-109. Errata in J. Number Theory85 (2000), 108. Zbl1049.11125MR1743503
- [9] H. ROSKAM Prime divisorsof linear recurrences and Artin's primitive root conjecture for number fields. J. Théor. Nombres Bordeaux13 (2001), 303-314. Zbl1044.11005MR1838089
- [10] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Études Sci. Publ. Math.54 (1981), 323-401. Zbl0496.12011MR644559
- [11] J.-P. Serre, Local Fields (2nd corrected printing). Springer-Verlag, New York, 1995. MR554237
- [12] P.J. Weinberger, On euclidean rings of algebraic integers. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), 321-332. Amer. Math. Soc., Providence, R. I., 1973. Zbl0287.12012MR337902
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.